Branching of Solutions of the Abstract Kinetic Equation
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, bifurcation of solutions of a special nonlinear operator equation used in mathematical physics is considered. In the case of an equation for which the Fréchet derivative of the associated operator is a locally perturbed Fredholm operator, sufficient conditions for branching of solutions are studied. The methodology of application of the formalism developed in the paper is demonstrated by the example of the Boltzmann equation.
@article{MZM_2003_73_1_a9,
     author = {N. N. Fimin and V. A. Chuyanov},
     title = {Branching of {Solutions} of the {Abstract} {Kinetic} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a9/}
}
TY  - JOUR
AU  - N. N. Fimin
AU  - V. A. Chuyanov
TI  - Branching of Solutions of the Abstract Kinetic Equation
JO  - Matematičeskie zametki
PY  - 2003
SP  - 113
EP  - 119
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a9/
LA  - ru
ID  - MZM_2003_73_1_a9
ER  - 
%0 Journal Article
%A N. N. Fimin
%A V. A. Chuyanov
%T Branching of Solutions of the Abstract Kinetic Equation
%J Matematičeskie zametki
%D 2003
%P 113-119
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a9/
%G ru
%F MZM_2003_73_1_a9
N. N. Fimin; V. A. Chuyanov. Branching of Solutions of the Abstract Kinetic Equation. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 113-119. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a9/

[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[2] Deimling K., Nonlinear Functional Analysis, Academic Press, New York, 1985

[3] Van der Pol B., Bremmer Kh., Operatsionnoe ischislenie na osnove dvustoronnego preobrazovaniya Laplasa, IL, M., 1952

[4] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] Fimin N. N., Spektralnye svoistva puchkov lineinykh operatorov, Preprint IPM im. M. V. Keldysha RAN, No. 7, 1997

[6] Ditkin V. V., “Nekotorye spektralnye svoistva puchka lineinykh operatorov v banakhovom prostranstve”, Matem. zametki, 22:6 (1977), 847–857 | MR | Zbl

[7] Caflisch R. E., Nicolaenko B., “Shock profile solutions of the Boltzmann equation”, Comm. Math. Phys., 86 (1982), 161–194 | DOI | MR | Zbl

[8] Zeidler E., Nonlinear Functional Analysis and its Applications. Fixed-Point Theorems, Springer-Verlag, New York, 1985 | Zbl

[9] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[10] Goldberg S., Unbounded Linear Operators, McGraw-Hill, New York, 1966

[11] Ditkin V. A., O spektralnykh svoistvakh puchkov operatorov, VTs AN SSSR, M., 1983

[12] Rutkas A. G., “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[13] Ditkin V. A., “O nekotorykh spektralnykh svoistvakh puchka lineinykh ogranichennykh operatorov”, Matem. zametki, 31:1 (1982), 75–79 | MR | Zbl

[14] Grad H., “Asymptotic theory of the Boltzmann equation, 2”, Proc. Intern. Symp. Rarefied Gas Dynamics, V. 1, Academic Press, New York, 1963, 26–59 | MR

[15] Nicolaenko B., “Dispersion laws for plane wave propagation”, The Boltzmann Equation, ed. F. A. Grunbaum, Courant Inst. Math. Sci., New York, 1971

[16] Schechter M., “On the essential spectrum of an arbitrary operator”, J. Math. Anal. Appl., 13 (1966), 205–213 | DOI | MR

[17] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1993 | Zbl