Absolute Continuity of the Spectrum of a Periodic Schr\"odinger Operator
Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absolute continuity of the spectrum of the Schrödinger operator in $L^2(\mathbb R^n)$, $n\ge3$, with periodic (with a common period lattice $\Lambda$) scalar $V$ and vector $A\in C^1(\mathbb R^n,\mathbb R^n)$ potentials for which either $A\in H_{\operatorname{loc}}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, or the Fourier series of the vector potential $A$ converges absolutely, $V\in L_w^{p(n)}(K)$, where $K$ is an elementary cell of the lattice $\Lambda$, $p(n)=n/2$ for $n=3,4,5,6$, and $p(n)=n-3$ for $n\ge7$, and the value of $\lim_{t\to+\infty}\|\theta_tV\|_{L_w^{p(n)}(K)}$ is sufficiently small, where $\theta_t(x)=0$, if $|V(x)|\le t$ and $\theta_t(x)=1$ otherwise, $x\in K$ and $t>0$.
@article{MZM_2003_73_1_a4,
     author = {L. I. Danilov},
     title = {Absolute {Continuity} of the {Spectrum} of a {Periodic} {Schr\"odinger} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a4/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Absolute Continuity of the Spectrum of a Periodic Schr\"odinger Operator
JO  - Matematičeskie zametki
PY  - 2003
SP  - 49
EP  - 62
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a4/
LA  - ru
ID  - MZM_2003_73_1_a4
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Absolute Continuity of the Spectrum of a Periodic Schr\"odinger Operator
%J Matematičeskie zametki
%D 2003
%P 49-62
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a4/
%G ru
%F MZM_2003_73_1_a4
L. I. Danilov. Absolute Continuity of the Spectrum of a Periodic Schr\"odinger Operator. Matematičeskie zametki, Tome 73 (2003) no. 1, pp. 49-62. http://geodesic.mathdoc.fr/item/MZM_2003_73_1_a4/

[1] Thomas L. E., “Time-dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982

[3] Birman M. Sh., Suslina T. A., “Absolyutnaya nepreryvnost dvumernogo periodicheskogo magnitnogo gamiltoniana s razryvnym vektornym potentsialom”, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl

[4] Sobolev A., Absolute Continuity of the Periodic Magnetic Schrödinger Operator, Res. Report No 97/06, Univ. of Sussex, 1997 | Zbl

[5] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[6] Kuchment P., Levendorskiǐ S., “On absolute continuity of spectra of periodic elliptic operators”, Oper. Theory Adv. Appl., 108 (1999), 291–297 | MR | Zbl

[7] Shen Z., On Absolute Continuity of the Periodic Schrödinger Operators, Preprint ESI No. 597, The Erwin Schrödinger Internat. Institute for Math. Phys., Wien, 1998; Preprint # 99-189, Texas Math. Physics Archive, 1999 | Zbl

[8] Morame A., “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A: Math. Gen., 31 (1998), 7593–7601 | DOI | MR | Zbl

[9] Morame A., The Absolute Continuity of the Spectrum of the Maxwell Operator in Periodic Media, Preprint # 99-308, Texas Math. Physics Archive, 1999

[10] Danilov L. I., “Otsenki rezolventy i spektr operatora Diraka s periodicheskim potentsialom”, TMF, 103:1 (1995), 3–22 | MR | Zbl

[11] Danilov L. I., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240 | MR | Zbl

[12] Danilov L. I., “O spektre dvumernogo periodicheskogo operatora Diraka”, TMF, 118:1 (1999), 3–14 | MR | Zbl

[13] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom, III, Dep. VINITI No. 2252-V92 (10.07.92), FTI UrO RAN, Izhevsk, 1992

[14] Birman M. Sh., Suslina T. A., The Periodic Dirac Operator is Absolutely Continuous, Preprint ESI No. 603, Erwin Schrödinger Internat. Institute Math. Phys., Wien, 1998

[15] Danilov L. I., “O spektre periodicheskogo operatora Diraka”, TMF, 124:1 (2000), 3–17 | MR | Zbl

[16] Danilov L. I., Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka, I, Dep. VINITI No. 1683-V00 (15.06.00), FTI UrO RAN, Izhevsk, 2000

[17] Kuchment P., Floquet Theory for Partial Differential Equations, Birkhäuser Verlag, Basel, 1993 | Zbl

[18] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978

[19] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973