Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_6_a9, author = {V. Yu. Protasov}, title = {On the {Decay} of {Infinite} {Products} of {Trigonometric} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {892--908}, publisher = {mathdoc}, volume = {72}, number = {6}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a9/} }
V. Yu. Protasov. On the Decay of Infinite Products of Trigonometric Polynomials. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 892-908. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a9/
[1] Derfel G. A., “A probabilistic method for a class of functional-differential equations”, Ukrain. Math. J., 41:10 (1989), 1137–1141 | DOI | MR | Zbl
[2] Derfel G. A., Dyn N., Levin D., “Generalized refinement equations and subdivision processes”, J. Approximation Theory, 80 (1995), 272–297 | DOI | MR | Zbl
[3] Protasov V., “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:6 (2000), 55–78 | DOI | MR | Zbl
[4] Cavaretta D., Dahmen W., Micchelli C., “Stationary subdivision”, Mem. Amer. Math. Soc., 93, 1991, 1–186 | MR
[5] Dyn N., Gregory J. A., Levin D., “Analysis of linear binary subdivision schemes for curve design”, Constructive Approximation, 7 (1991), 127–147 | DOI | MR | Zbl
[6] Erdös P., “On the smoothness properties of Bernoulli convolutions”, Amer. J. Math., 62 (1940), 180–186 | DOI | MR | Zbl
[7] Peres Y., Solomyak B., “Absolute continuity of Bernoulli convolution, a simple proof”, Math. Res. Letters, 3:2 (1996), 231–239 | MR | Zbl
[8] Reznick B., “Some binary partition functions”, Analytic Number Theory (Allerton Park, IL, 1989), 451–477 | Zbl
[9] Chui C. K., An Introduction to Wavelets, Acad. Press Inc., 1992
[10] Dyn N., Levin D., “Interpolatory subdivision schemes for the generation of curves and surfaces”, Multivariate Approximation and Interpolation (Duisburg, 1989), Birkhäuser, Basel, 1990, 91–106 | MR
[11] Ron A., “Smooth refinable functions provide good approximation”, SIAM J. Math. Anal. Appl., 28 (1997), 731–748 | DOI | MR | Zbl
[12] Daubechies I., “Orthonormal bases of wavelets with compact support”, Comm. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl
[13] Cohen A., Daubechies I., “A new technique to estimate the regularity of refinable functions”, Rev. Mat. Iberoamericana, 12:2 (1996), 527–591 | MR | Zbl
[14] Ron A., Shen Z., The Sobolev Regularity of Refinable Functions, Preprint, 1997
[15] Daubechies I., Lagarias J., “Two-scale difference equations. I: Global regularity of solutions”, SIAM J. Math. Anal. Appl., 22 (1991), 1388–1410 | DOI | MR | Zbl
[16] Daubechies I., Lagarias J., “Two-scale difference equations. II: Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal. Appl., 23 (1992), 1031–1079 | DOI | MR | Zbl
[17] Schumaker L. L., Spline Functions: Basic Theory, John Wiley, New York, 1981 | Zbl
[18] Berkolaiko M. Z., Novikov I. Ya., “O beskonechno gladkikh pochti-vspleskakh s kompaktnym nositelem”, Dokl. RAN, 326:6 (1992), 615–618 | MR
[19] de Boor C., DeVore R., Ron A., “On the construction of multivariate pre-wavelets”, Constructive Approximation, 2:3 (1993), 123–166 | DOI | Zbl
[20] Novikov I. Ya., Bazisy vspleskov funktsionalnykh prostranstv, Diss. ... dokt. fiz.-matem. nauk, Voronezhskii gosudarstvennyi universitet, Voronezh, 2000 | Zbl
[21] Cohen A., Dyn N., “Nonstationary subdivision schemes and multiresolution analysis”, SIAM J. Math. Anal. Appl., 27 (1996), 1745–1769 | DOI | MR | Zbl