Sequential Reflexive Logics with Noncontingency Operator
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 853-868

Voir la notice de l'article provenant de la source Math-Net.Ru

Hilbert systems $L^\vartriangleright$ and sequential calculi $[L^\vartriangleright]$ for the versions of logics $L=\mathbf T,\mathbf {S4},\mathbf B,\mathbf {S5}$, and $\mathbf {Grz}$ stated in a language with the single modal noncontingency operator $\vartriangleright A=\square A\vee \square \neg A$ are constructed. It is proved that cut is not eliminable in the calculi $[L^\vartriangleright]$, but we can restrict ourselves to analytic cut preserving the subformula property. Thus the calculi $[\mathbf T^\vartriangleright]$, $[\mathbf {S4}^\vartriangleright]$, $[\mathbf {S5}^\vartriangleright ]$ ($[\mathbf {Grz}^\vartriangleright]$, respectively) satisfy the (weak, respectively) subformula property; for $[\mathbf B_2^\vartriangleright]$, this question remains open. For the noncontingency logics in question, the Craig interpolation property is established.
@article{MZM_2002_72_6_a6,
     author = {E. E. Zolin},
     title = {Sequential {Reflexive} {Logics} with {Noncontingency} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--868},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/}
}
TY  - JOUR
AU  - E. E. Zolin
TI  - Sequential Reflexive Logics with Noncontingency Operator
JO  - Matematičeskie zametki
PY  - 2002
SP  - 853
EP  - 868
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/
LA  - ru
ID  - MZM_2002_72_6_a6
ER  - 
%0 Journal Article
%A E. E. Zolin
%T Sequential Reflexive Logics with Noncontingency Operator
%J Matematičeskie zametki
%D 2002
%P 853-868
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/
%G ru
%F MZM_2002_72_6_a6
E. E. Zolin. Sequential Reflexive Logics with Noncontingency Operator. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 853-868. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/