Sequential Reflexive Logics with Noncontingency Operator
Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 853-868
Voir la notice de l'article provenant de la source Math-Net.Ru
Hilbert systems $L^\vartriangleright$ and sequential calculi $[L^\vartriangleright]$ for the versions of logics $L=\mathbf T,\mathbf {S4},\mathbf B,\mathbf {S5}$, and $\mathbf {Grz}$ stated in a language with the single modal noncontingency operator $\vartriangleright A=\square A\vee \square \neg A$ are constructed. It is proved that cut is not eliminable in the calculi $[L^\vartriangleright]$, but we can restrict ourselves to analytic cut preserving the subformula property. Thus the calculi $[\mathbf T^\vartriangleright]$,
$[\mathbf {S4}^\vartriangleright]$,
$[\mathbf {S5}^\vartriangleright ]$ ($[\mathbf {Grz}^\vartriangleright]$, respectively) satisfy the (weak, respectively) subformula property; for $[\mathbf B_2^\vartriangleright]$, this question remains open. For the noncontingency logics in question, the Craig interpolation property is established.
@article{MZM_2002_72_6_a6,
author = {E. E. Zolin},
title = {Sequential {Reflexive} {Logics} with {Noncontingency} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {853--868},
publisher = {mathdoc},
volume = {72},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/}
}
E. E. Zolin. Sequential Reflexive Logics with Noncontingency Operator. Matematičeskie zametki, Tome 72 (2002) no. 6, pp. 853-868. http://geodesic.mathdoc.fr/item/MZM_2002_72_6_a6/