Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_5_a9, author = {S. A. Kudryavtsev}, title = {Classification of {Logarithmic} {Enriques} {Surfaces} with $\delta =2$}, journal = {Matemati\v{c}eskie zametki}, pages = {715--722}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/} }
S. A. Kudryavtsev. Classification of Logarithmic Enriques Surfaces with $\delta =2$. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 715-722. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/
[1] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR
[2] Kudryavtsev S. A., “Klassifikatsiya trekhmernykh isklyuchitelnykh logkanonicheskikh giperpoverkhnostnykh osobennostei, I”, Izv. RAN, 66:5 (2002), 83–170 | MR | Zbl
[3] Blache R., “The structure of l.c. surfaces of Kodaira dimension zero”, J. Algebraic Geom., 4 (1995), 137–179 | MR | Zbl
[4] Zhang D.-Q., “Logarithmic Enriques surfaces”, J. Math. Kyoto Univ., 31 (1991), 419–466 | MR | Zbl
[5] Zhang D.-Q., “Logarithmic Enriques surfaces, II”, J. Math. Kyoto Univ., 33 (1993), 357–397 | MR | Zbl
[6] Oguiso K., Zhang D.-Q., “On Vorontsov's theorem on $K3$ surfaces with non-symplectic group actions”, Proc. Amer. Math. Soc., 128 (2000), 1571–1580 | DOI | MR | Zbl
[7] Oguiso K., Zhang D.-Q., $K3$ surfaces with order 11 automorphisms, , 1999 E-print math.AG/9907020
[8] Kollar J. et al., Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992
[9] Prokhorov Yu. G., Lectures on Complements on Log Surfaces, MSJ Memoirs, 10, 2001 | MR