Classification of Logarithmic Enriques Surfaces with $\delta =2$
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 715-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify logarithmic Enriques surfaces with $\delta =2$.
@article{MZM_2002_72_5_a9,
     author = {S. A. Kudryavtsev},
     title = {Classification of {Logarithmic} {Enriques} {Surfaces} with $\delta =2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {715--722},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/}
}
TY  - JOUR
AU  - S. A. Kudryavtsev
TI  - Classification of Logarithmic Enriques Surfaces with $\delta =2$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 715
EP  - 722
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/
LA  - ru
ID  - MZM_2002_72_5_a9
ER  - 
%0 Journal Article
%A S. A. Kudryavtsev
%T Classification of Logarithmic Enriques Surfaces with $\delta =2$
%J Matematičeskie zametki
%D 2002
%P 715-722
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/
%G ru
%F MZM_2002_72_5_a9
S. A. Kudryavtsev. Classification of Logarithmic Enriques Surfaces with $\delta =2$. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 715-722. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a9/

[1] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR

[2] Kudryavtsev S. A., “Klassifikatsiya trekhmernykh isklyuchitelnykh logkanonicheskikh giperpoverkhnostnykh osobennostei, I”, Izv. RAN, 66:5 (2002), 83–170 | MR | Zbl

[3] Blache R., “The structure of l.c. surfaces of Kodaira dimension zero”, J. Algebraic Geom., 4 (1995), 137–179 | MR | Zbl

[4] Zhang D.-Q., “Logarithmic Enriques surfaces”, J. Math. Kyoto Univ., 31 (1991), 419–466 | MR | Zbl

[5] Zhang D.-Q., “Logarithmic Enriques surfaces, II”, J. Math. Kyoto Univ., 33 (1993), 357–397 | MR | Zbl

[6] Oguiso K., Zhang D.-Q., “On Vorontsov's theorem on $K3$ surfaces with non-symplectic group actions”, Proc. Amer. Math. Soc., 128 (2000), 1571–1580 | DOI | MR | Zbl

[7] Oguiso K., Zhang D.-Q., $K3$ surfaces with order 11 automorphisms, , 1999 E-print math.AG/9907020

[8] Kollar J. et al., Flips and Abundance for Algebraic Threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992

[9] Prokhorov Yu. G., Lectures on Complements on Log Surfaces, MSJ Memoirs, 10, 2001 | MR