Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_5_a16, author = {W. V. Zudilin}, title = {A {Third-Order} {Ap\'ery-Like} {Recursion} for $\zeta (5)$}, journal = {Matemati\v{c}eskie zametki}, pages = {796--800}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a16/} }
W. V. Zudilin. A Third-Order Ap\'ery-Like Recursion for $\zeta (5)$. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 796-800. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a16/
[1] Apéry R., Astérisque, 61, 1979, 11–13 | Zbl
[2] Van der Poorten A., Math. Intelligencer, 1:4 (1978/79), 195–203 | MR
[3] Sorokin V. N., Ob odnom algoritme bystrogo vychisleniya $\zeta(4)$, Preprint, IPM im. M. V. Keldysha RAN, M., 2002
[4] Zudilin W., “Well-poised hypergeometric service for diophantine problems of zeta values”, J. Théorie Nombres Bordeaux, Actes des 12èmes rencontres arithmétiques de Caen (June 29–30, 2001), 2003 (to appear) | MR
[5] Zudilin W., E-print math.NT/0201024
[6] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, A. K. Peters, Ltd., Wellesley (M.A.), 1997
[7] Zudilin W., E-print math.NT/0202159
[8] Vasilyev D. V, Preprint No 1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk, 2001
[9] Zudilin V. V., UMN, 57:4 (2002), 177–178 | MR
[10] Beukers F., Bull. London Math. Soc., 11:3 (1979), 268–272 | DOI | MR | Zbl
[11] Gosper R. W, Letters of 24.10.2000 and 25.10.2000, Favorite Mathematical Constants, ed. S. Finch, 2000; http://pauillac.inria.fr/algo/bsolve/constant/apery/infprd.html | Zbl
[12] Karatsuba E. A., Problemy peredachi informatsii, 31:4 (1995), 69–80 | MR