Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_5_a15, author = {I. I. Sharapudinov}, title = {Approximation {Properties} of the {Operators} $\mathscr Y_{n+2r}(f)$ and of {Their} {Discrete} {Analogs}}, journal = {Matemati\v{c}eskie zametki}, pages = {765--795}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a15/} }
TY - JOUR AU - I. I. Sharapudinov TI - Approximation Properties of the Operators $\mathscr Y_{n+2r}(f)$ and of Their Discrete Analogs JO - Matematičeskie zametki PY - 2002 SP - 765 EP - 795 VL - 72 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a15/ LA - ru ID - MZM_2002_72_5_a15 ER -
I. I. Sharapudinov. Approximation Properties of the Operators $\mathscr Y_{n+2r}(f)$ and of Their Discrete Analogs. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 765-795. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a15/
[1] Sharapudinov I. I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure–Lezhandra”, Matem. sb., 191:5 (2000), 143–160 | MR | Zbl
[2] Sharapudinov I. I., “Priblizhenie diskretnykh funktsii i mnogochleny Chebysheva, ortogonalnye na ravnomernoi setke”, Matem. zametki, 67:3 (2000), 460–470 | MR | Zbl
[3] Sharapudinov I. I., Mnogochleny, ortogonalnye na setkakh. Teoriya i prilozheniya, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997
[4] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[5] Gasper G., “Positivity and special functions”, Theory and Appl. Spec. Funct., ed. R. A. Askey, 1975, 375–433 | MR | Zbl
[6] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[7] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965
[8] Karlin S., McGregor J. L., “The Hahn polynomials, formulas, and an application”, Scripta Math., 26 (1961), 33–46 | MR | Zbl