On an Algebraic Extension of $A(E)$
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 649-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebraic extension of the algebra $A(E)$, where $E$ is a compactum in $\mathbb C$ with nonempty connected interior, leads to a Banach algebra $B$ of functions that are holomorphic on some analytic set $K^\circ \subset \mathbb C^2$ with boundary $bK$ and continuous up to $bK$. The singular points of the spectrum of $B$ and their defects are investigated. For the case in which $B$ is a uniform algebra, the depth of $B$ in the algebra $C(bK)$ is estimated. In particular, conditions under which $B$ is maximal on $bK$ are obtained.
@article{MZM_2002_72_5_a1,
     author = {B. T. Batikyan and S. A. Grigoryan},
     title = {On an {Algebraic} {Extension} of $A(E)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {649--653},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/}
}
TY  - JOUR
AU  - B. T. Batikyan
AU  - S. A. Grigoryan
TI  - On an Algebraic Extension of $A(E)$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 649
EP  - 653
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/
LA  - ru
ID  - MZM_2002_72_5_a1
ER  - 
%0 Journal Article
%A B. T. Batikyan
%A S. A. Grigoryan
%T On an Algebraic Extension of $A(E)$
%J Matematičeskie zametki
%D 2002
%P 649-653
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/
%G ru
%F MZM_2002_72_5_a1
B. T. Batikyan; S. A. Grigoryan. On an Algebraic Extension of $A(E)$. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 649-653. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/

[1] Arens R., Hoffman K., “Algebraic extensions of normed algebras”, Proc. Amer. Math. Soc., 7 (1956), 203–210 | DOI | MR | Zbl

[2] Lindberg J. A., “Algebraic extensions of commutative Banach algebras”, Pacific J. Math., 14 (1964), 559–583 | MR | Zbl

[3] Batikyan B. T., Grigorian S. A., “Singular points of spectra of uniform algebras”, J. Cont. Math. An., 33:1 (1998), 1–16 | MR | Zbl

[4] Serr Zh., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[5] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | Zbl

[6] Rickart C. E., “Analytic functions of an infinite numbers of complex variables”, Duke Math. J., 36 (1969), 581–597 | DOI | MR | Zbl

[7] Rickart C. E., “The maximal ideal space of functions locally approximable in a function algebra”, Proc. Amer. Math. Soc., 17 (1966), 1320–1326 | DOI | MR | Zbl

[8] Heuer G. A., Lindberg J. A., “Algebraic extensions of continuous function algebra”, Proc. Amer. Math. Soc., 14 (1963), 337–342 | DOI | MR | Zbl

[9] Batikyan B. T., Grigoryan S. A., “O ravnomernykh algebrakh, soderzhaschikh $A(K)$”, Izv. AN ArmSSR. Matem., 24:6 (1989), 547–556 | MR

[10] Senichkin V. N., “Subgarmonicheskie funktsii i analiticheskaya struktura v prostranstve maksimalnykh idealov ravnomernoi algebry”, Matem. sb., 108:1 (1979), 115–133 | MR | Zbl

[11] Batikyan B. T., Grigoryan S. A., “O funktsionalnykh algebrakh konechnogo tipa”, UMN, 29:6 (1974), 155–166 | MR