On an Algebraic Extension of $A(E)$
Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 649-653

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebraic extension of the algebra $A(E)$, where $E$ is a compactum in $\mathbb C$ with nonempty connected interior, leads to a Banach algebra $B$ of functions that are holomorphic on some analytic set $K^\circ \subset \mathbb C^2$ with boundary $bK$ and continuous up to $bK$. The singular points of the spectrum of $B$ and their defects are investigated. For the case in which $B$ is a uniform algebra, the depth of $B$ in the algebra $C(bK)$ is estimated. In particular, conditions under which $B$ is maximal on $bK$ are obtained.
@article{MZM_2002_72_5_a1,
     author = {B. T. Batikyan and S. A. Grigoryan},
     title = {On an {Algebraic} {Extension} of $A(E)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {649--653},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/}
}
TY  - JOUR
AU  - B. T. Batikyan
AU  - S. A. Grigoryan
TI  - On an Algebraic Extension of $A(E)$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 649
EP  - 653
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/
LA  - ru
ID  - MZM_2002_72_5_a1
ER  - 
%0 Journal Article
%A B. T. Batikyan
%A S. A. Grigoryan
%T On an Algebraic Extension of $A(E)$
%J Matematičeskie zametki
%D 2002
%P 649-653
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/
%G ru
%F MZM_2002_72_5_a1
B. T. Batikyan; S. A. Grigoryan. On an Algebraic Extension of $A(E)$. Matematičeskie zametki, Tome 72 (2002) no. 5, pp. 649-653. http://geodesic.mathdoc.fr/item/MZM_2002_72_5_a1/