Representability of Trees and Some of Their Applications
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 516-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a tree is representable as the free product of a finite set of cyclic groups of order two, then it is necessarily a Caley tree. For other trees, their presentations as some finite sets of sequences constructed from some recurrence relations are described. Using these presentations, we give a complete description of translation-invariant measures and a class of periodic Gibbs measures for a nonhomogeneous Ising model on an arbitrary tree. A sufficient condition for a random walk in a random environment on an arbitrary tree to be transient is described.
@article{MZM_2002_72_4_a4,
     author = {U. A. Rozikov},
     title = {Representability of {Trees} and {Some} of {Their} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--527},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a4/}
}
TY  - JOUR
AU  - U. A. Rozikov
TI  - Representability of Trees and Some of Their Applications
JO  - Matematičeskie zametki
PY  - 2002
SP  - 516
EP  - 527
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a4/
LA  - ru
ID  - MZM_2002_72_4_a4
ER  - 
%0 Journal Article
%A U. A. Rozikov
%T Representability of Trees and Some of Their Applications
%J Matematičeskie zametki
%D 2002
%P 516-527
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a4/
%G ru
%F MZM_2002_72_4_a4
U. A. Rozikov. Representability of Trees and Some of Their Applications. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 516-527. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a4/

[1] Liggett T. M., “Multiple transition point for the contact process on a binary tree”, Ann. Probability, 24 (1996), 1675–1710 | DOI | MR | Zbl

[2] Lyons R., “The Ising model and percolation on trees and tree-line graphs”, Comm. Math. Phys., 125 (1989), 337–353 | DOI | MR | Zbl

[3] Lyons R., “Random walks and percolation on trees”, Ann. Probability, 18 (1990), 931–958 | DOI | MR | Zbl

[4] Pemantle R., “The contact process on trees”, Ann. Probability, 20 (1992), 2089–2116 | DOI | MR | Zbl

[5] Ganikhodzhaev N. N., “Gruppovoe predstavlenie i avtomorfizmy dereva Keli”, Dokl. AN RUz., 1994, no. 4, 3–5 | MR

[6] Ganikhodzhaev N. N., Rozikov U. A., “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh modelei na dereve Keli”, TMF, 111:1 (1997), 109–117 | MR | Zbl

[7] Rozikov U. A., “Struktury razbienii dereva Keli i ikh primeneniya dlya opisaniya periodicheskikh raspredelenii Gibbsa”, TMF, 112:1 (1997), 170–175 | MR | Zbl

[8] Ganikhodzhaev N. N., Rozikov U. A., “O neuporyadochennykh fazakh nekotorykh modelei na dereve Keli”, Matem. sb., 190:2 (1999), 31–42 | MR | Zbl

[9] Rozikov U. A., “Opisanie predelnykh gibbsovskikh mer dlya $\lambda$-modelei na reshetkakh Bete”, Sib. matem. zh., 39:2 (1998), 427–435 | MR | Zbl

[10] Rozikov U. A., “Postroenie neschetnogo chisla gibbsovskikh mer neodnorodnoi modeli Izinga”, TMF, 118:1 (1999), 95–104 | MR | Zbl

[11] Rozikov U. A., “Kriterii vozvratnosti dlya sluchainogo bluzhdaniya v sluchainoi srede na dereve Keli”, Dokl. AN RUz., 1998, no. 9, 3–5 | Zbl

[12] Rozikov U. A., “Uslovie nevozvratnosti sluchainogo bluzhdaniya v sluchainoi srede na dereve Keli”, Uzbekskii matem. zh., 1998, no. 5, 79–85 | MR

[13] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | Zbl

[14] Letchikov A. V., “Kriterii primenimosti tsentralnoi predelnoi teoremy k odnomernym sluchainym bluzhdaniyam v sluchainyi sredakh”, Teoriya veroyatnostei i primen., 37:3 (1992), 576–580 | MR

[15] Solomon F., “Random walk in random environments”, Ann. Probability, 3:1 (1975), 1–31 | DOI | MR | Zbl