A Berry--Esseen Type Estimate for a Weakly Associated Vector Random Field
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 617-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Berry–Esseen type estimate is established for a weakly associated vector random field when sums are taken over regularly growing sets.
@article{MZM_2002_72_4_a12,
     author = {A. P. Shashkin},
     title = {A {Berry--Esseen} {Type} {Estimate} for a {Weakly} {Associated} {Vector} {Random} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {617--624},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a12/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - A Berry--Esseen Type Estimate for a Weakly Associated Vector Random Field
JO  - Matematičeskie zametki
PY  - 2002
SP  - 617
EP  - 624
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a12/
LA  - ru
ID  - MZM_2002_72_4_a12
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T A Berry--Esseen Type Estimate for a Weakly Associated Vector Random Field
%J Matematičeskie zametki
%D 2002
%P 617-624
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a12/
%G ru
%F MZM_2002_72_4_a12
A. P. Shashkin. A Berry--Esseen Type Estimate for a Weakly Associated Vector Random Field. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 617-624. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a12/

[1] Dabrowski A. R., Dehling H., “A Berry–Esseen theorem and a functional law of the iterated logarithm for weakly associated random vectors”, Stochastic Processes Appl., 30:2 (1988), 277–289 | DOI | MR | Zbl

[2] Esary J., Proschan F., Walkup D., “Association of random variables with applications”, Ann. Math. Statistics, 38:5 (1967), 1466–1474 | DOI | MR | Zbl

[3] Newman C. M., “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statistics and Probability, ed. Y. L. Tong, Hayward, 1984, 127–140

[4] Bulinskii A. V., “Skorost skhodimosti v tsentralnoi predelnoi teoreme dlya polei assotsiirovannykh velichin”, Teor. veroyatn. i primen., 40:1 (1995), 165–174 | MR

[5] Bulinskii A. V., “Funktsionalnyi zakon povtornogo logarifma dlya assotsiirovannykh sluchainykh polei”, Fundamentalnaya i prikladnaya matem., 1:3 (1995), 623–639 | MR | Zbl

[6] Bulinski A. V., “On the convergence rates in the central limit theorem for positively and negatively dependent random fields”, Probability Theory and Math. Statistics, eds. I. A. Ibragimov, A. Yu. Zaitsev, Gordon and Breach, 1996, 3–14 | MR | Zbl

[7] Bolthausen E., “On the central limit theorem for stationary mixing random fields”, Ann. Probability, 10:4 (1982), 1047–1050 | DOI | MR | Zbl

[8] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[9] Bulinskii A. V., Vronskii M. A., “Statisticheskii variant tsentralnoi predelnoi teoremy”, Fundamentalnaya i prikladnaya matem., 2:4 (1996), 999–1018 | MR | Zbl

[10] von Bar B., “Multi-dimensional integral limit theorem”, Ark. Math., 7:1 (1967), 71–88 | DOI | MR | Zbl

[11] Bulinski A. V., Suquet Ch., “Normal approximation for quasiassociated random fields”, Statistics and Probability Letters, 54:2 (2001), 215–226 | DOI | MR | Zbl

[12] Bulinskii A. V., “Asimptoticheskaya gaussovost kvaziassotsiirovannykh vektornykh sluchainykh polei”, Obozrenie prikladnoi i promyshlennoi matematiki, 7:2 (2000), 482–483