Approximation of Surface Measures in a Locally Convex Space
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 597-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is an analog of the surface layer theorem for measures given on a locally convex space with a continuously and densely embedded Hilbert subspace (for a surface of finite codimension). Earlier, the surface layer theorem was proved only for Banach spaces: for surfaces of codimension 1 by Uglanov (1979) and for surfaces of an arbitrary finite codimension by Yakhlakov (1990). In these works, the definition of the surface layer and the proof of the theorem essentially use the fact that the original space is equipped with a norm.
@article{MZM_2002_72_4_a11,
     author = {\'E. Yu. Shamarova},
     title = {Approximation of {Surface} {Measures} in a {Locally} {Convex} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--616},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a11/}
}
TY  - JOUR
AU  - É. Yu. Shamarova
TI  - Approximation of Surface Measures in a Locally Convex Space
JO  - Matematičeskie zametki
PY  - 2002
SP  - 597
EP  - 616
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a11/
LA  - ru
ID  - MZM_2002_72_4_a11
ER  - 
%0 Journal Article
%A É. Yu. Shamarova
%T Approximation of Surface Measures in a Locally Convex Space
%J Matematičeskie zametki
%D 2002
%P 597-616
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a11/
%G ru
%F MZM_2002_72_4_a11
É. Yu. Shamarova. Approximation of Surface Measures in a Locally Convex Space. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 597-616. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a11/

[1] Uglanov A. V., “Poverkhnostnye integraly v lineinykh topologicheskikh prostranstvakh”, Dokl. RAN, 344:4 (1995), 450–453 | MR | Zbl

[2] Uglanov A. V., Integration on Infinite-Dimensional Surfaces and Its Applications, Kluwer Acad. Publ., Dordrecht, 2000 | Zbl

[3] Yakhlakov V. Yu., “Poverkhnostnye mery na poverkhnostyakh konechnoi korazmernosti v banakhovom prostranstve”, Matem. zametki, 47:4 (1990), 147–156 | MR | Zbl

[4] Smolyanov O. G., “Gladkie mery na gruppakh petel”, Dokl. RAN, 343:4 (1995), 455–458 | MR

[5] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Izd-vo MGU, M., 1979

[6] Uglanov A. V., “Poverkhnostnye integraly v banakhovom prostranstve”, Matem. sb., 110:2 (1979), 189–217 | MR | Zbl

[7] Shvarts L., Analiz, Mir, M., 1972

[8] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya na beskonechnomernykh prostranstvakh, Nauka, M., 1983

[9] Smolyanov O. G., von Weizsäcker H., “Differentiable families of measures”, J. Funct. Analysis, 118:2 (1993), 455–476 | DOI | MR