$\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 490-501

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the behavior of rectangular partial sums of the Fourier series of continuous functions of several variables with respect to the trigonometric system. The Fourier series is called $\lambda$-convergent if the limit of rectangular partial sums over all indices $\vec M=(M_1,\dots ,M_n)$, for which $1/\lambda \le M_j/M_k\le \lambda $ for all $j$ and $k$ exists. In the space of arbitrary even dimension $2m$ we construct an example of a continuous function with an estimate of the modulus of continuity $\omega (F,\delta)=\underset {\delta \to +0}\to O(\ln ^{-m}(1/\delta))$ such that its Fourier series is $\lambda$-divergent everywhere for any $\lambda >1$.
@article{MZM_2002_72_4_a1,
     author = {A. N. Bakhvalov},
     title = {$\lambda${-Divergence} of the {Fourier} {Series} of {Continuous} {Functions} of {Several} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--501},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
JO  - Matematičeskie zametki
PY  - 2002
SP  - 490
EP  - 501
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/
LA  - ru
ID  - MZM_2002_72_4_a1
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
%J Matematičeskie zametki
%D 2002
%P 490-501
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/
%G ru
%F MZM_2002_72_4_a1
A. N. Bakhvalov. $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 490-501. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/