$\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 490-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the behavior of rectangular partial sums of the Fourier series of continuous functions of several variables with respect to the trigonometric system. The Fourier series is called $\lambda$-convergent if the limit of rectangular partial sums over all indices $\vec M=(M_1,\dots ,M_n)$, for which $1/\lambda \le M_j/M_k\le \lambda $ for all $j$ and $k$ exists. In the space of arbitrary even dimension $2m$ we construct an example of a continuous function with an estimate of the modulus of continuity $\omega (F,\delta)=\underset {\delta \to +0}\to O(\ln ^{-m}(1/\delta))$ such that its Fourier series is $\lambda$-divergent everywhere for any $\lambda >1$.
@article{MZM_2002_72_4_a1,
     author = {A. N. Bakhvalov},
     title = {$\lambda${-Divergence} of the {Fourier} {Series} of {Continuous} {Functions} of {Several} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {490--501},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
JO  - Matematičeskie zametki
PY  - 2002
SP  - 490
EP  - 501
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/
LA  - ru
ID  - MZM_2002_72_4_a1
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables
%J Matematičeskie zametki
%D 2002
%P 490-501
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/
%G ru
%F MZM_2002_72_4_a1
A. N. Bakhvalov. $\lambda$-Divergence of the Fourier Series of Continuous Functions of Several Variables. Matematičeskie zametki, Tome 72 (2002) no. 4, pp. 490-501. http://geodesic.mathdoc.fr/item/MZM_2002_72_4_a1/

[1] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl

[2] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | DOI | MR | Zbl

[3] Bakhbukh M., Nikishin E. M., “O skhodimosti dvoinykh ryadov Fure ot nepreryvnykh funktsii”, Sib. matem. zh., 14:6 (1973), 1189–1199 | MR | Zbl

[4] Oskolkov K. I., “Otsenka skorosti priblizheniya nepreryvnoi funktsii i ee sopryazhennoi summami Fure na mnozhestve polnoi mery”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1373–1407 | MR

[5] Zhizhiashvili L. V., “O skhodimosti kratnykh trigonometricheskikh ryadov Fure”, Soobsch. AN GSSR, 80:1 (1975), 17–19 | MR | Zbl

[6] Dyachenko M. I., “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[7] Bakhvalov A. N., “O raskhodimosti vsyudu ryadov Fure nepreryvnykh funktsii mnogikh peremennykh”, Matem. sb., 188:8 (1997), 45–62 | MR | Zbl

[8] Bojanic R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publ. Inst. Math. (Belgrade), 26:40 (1979), 57–60 | MR | Zbl

[9] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh ryadov”, UMN, 28:2 (1973), 65–119 | MR