Bases of Exponentials in the Spaces $L^p(-\pi,\pi)$
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 418-432

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that systems of exponentials orthogonal to measures of a special kind form bases in $L^p(-\pi,\pi)$, $1$, for which an analog of the Riesz theorem on the projection from $L^p$ onto $H^p$ is valid.
@article{MZM_2002_72_3_a9,
     author = {A. M. Sedletskii},
     title = {Bases of {Exponentials} in the {Spaces} $L^p(-\pi,\pi)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {418--432},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a9/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Bases of Exponentials in the Spaces $L^p(-\pi,\pi)$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 418
EP  - 432
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a9/
LA  - ru
ID  - MZM_2002_72_3_a9
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Bases of Exponentials in the Spaces $L^p(-\pi,\pi)$
%J Matematičeskie zametki
%D 2002
%P 418-432
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a9/
%G ru
%F MZM_2002_72_3_a9
A. M. Sedletskii. Bases of Exponentials in the Spaces $L^p(-\pi,\pi)$. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 418-432. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a9/