Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_3_a8, author = {O. V. Matveev}, title = {Bases in {Sobolev} {Spaces} on {Bounded} {Domains} with {Lipschitzian} {Boundary}}, journal = {Matemati\v{c}eskie zametki}, pages = {408--417}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/} }
O. V. Matveev. Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 408-417. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/
[1] Ciesielski Z., Figiel T., “Spline bases in classical function spaces on compact $C^\infty$ manifolds. I; II”, Studia Math., 76:1 (1983), 1–58 | MR | Zbl
[2] Cheselskii Z., “Bazisy i $K$-funktsionaly dlya prostranstv Soboleva nad kompaktnymi mnogoobraziyami klassa $C^\infty$”, Tr. MIAN, 164, Nauka, M., 1983, 197–202 | MR | Zbl
[3] Matveev O. V., “Splain-interpolyatsiya funktsii neskolkikh peremennykh i bazisy v prostranstvakh Soboleva”, Tr. MIAN, 198, Nauka, M., 1992, 125–152 | Zbl
[4] Subbotin Yu. N., “Priblizhenie splainami i gladkie bazisy v $C[0,2\pi]$”, Matem. zametki, 12:1 (1972), 43–51 | MR | Zbl
[5] Matveev O. V., “Interpolirovanie $D^m$-splainami i bazisy v prostranstvakh Soboleva”, Matem. sb., 189:11 (1998), 75–102 | MR | Zbl
[6] Novikov I. Ya., Bazisy vspleskov v funktsionalnykh prostranstvakh, Diss. ... d. f.-m. n., Voronezh. gos. un-t, Voronezh, 2000 | Zbl
[7] Cohen A., Dahmen W., De Vore R., “Multiscale decompositions on bounded domains”, Trans. Amer. Math. Soc., 352:8 (2000), 3651–3685 | DOI | MR | Zbl
[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl
[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988