Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 408-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Sobolev space $W_p^k(\Omega )$, where $\Omega$ is a bounded domain in $\mathbb R^n$ with a Lipschitzian boundary, for an arbitrarily given $m\in \mathbb N$, we construct a basis such that the error of approximation of a function $f\in W_p^k(\Omega )$ the $N$th partial sum of its expansion with respect to this basis can be estimated in terms of the modulus of smoothness $\omega _m(D^kf,N^{-1/n})_{L_p(\Omega )}$ of order $m$.
@article{MZM_2002_72_3_a8,
     author = {O. V. Matveev},
     title = {Bases in {Sobolev} {Spaces} on {Bounded} {Domains} with {Lipschitzian} {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {408--417},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/}
}
TY  - JOUR
AU  - O. V. Matveev
TI  - Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary
JO  - Matematičeskie zametki
PY  - 2002
SP  - 408
EP  - 417
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/
LA  - ru
ID  - MZM_2002_72_3_a8
ER  - 
%0 Journal Article
%A O. V. Matveev
%T Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary
%J Matematičeskie zametki
%D 2002
%P 408-417
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/
%G ru
%F MZM_2002_72_3_a8
O. V. Matveev. Bases in Sobolev Spaces on Bounded Domains with Lipschitzian Boundary. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 408-417. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a8/

[1] Ciesielski Z., Figiel T., “Spline bases in classical function spaces on compact $C^\infty$ manifolds. I; II”, Studia Math., 76:1 (1983), 1–58 | MR | Zbl

[2] Cheselskii Z., “Bazisy i $K$-funktsionaly dlya prostranstv Soboleva nad kompaktnymi mnogoobraziyami klassa $C^\infty$”, Tr. MIAN, 164, Nauka, M., 1983, 197–202 | MR | Zbl

[3] Matveev O. V., “Splain-interpolyatsiya funktsii neskolkikh peremennykh i bazisy v prostranstvakh Soboleva”, Tr. MIAN, 198, Nauka, M., 1992, 125–152 | Zbl

[4] Subbotin Yu. N., “Priblizhenie splainami i gladkie bazisy v $C[0,2\pi]$”, Matem. zametki, 12:1 (1972), 43–51 | MR | Zbl

[5] Matveev O. V., “Interpolirovanie $D^m$-splainami i bazisy v prostranstvakh Soboleva”, Matem. sb., 189:11 (1998), 75–102 | MR | Zbl

[6] Novikov I. Ya., Bazisy vspleskov v funktsionalnykh prostranstvakh, Diss. ... d. f.-m. n., Voronezh. gos. un-t, Voronezh, 2000 | Zbl

[7] Cohen A., Dahmen W., De Vore R., “Multiscale decompositions on bounded domains”, Trans. Amer. Math. Soc., 352:8 (2000), 3651–3685 | DOI | MR | Zbl

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988