On Global Properties of Polynomials Guaranteed by Their Behavior on a Subset
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 338-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish the order of growth of different norms of polynomials as a function of their degree by the given estimates of their values on a subset of the closed interval under consideration.
@article{MZM_2002_72_3_a2,
     author = {N. Sh. Zagirov},
     title = {On {Global} {Properties} of {Polynomials} {Guaranteed} by {Their} {Behavior} on a {Subset}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {338--355},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a2/}
}
TY  - JOUR
AU  - N. Sh. Zagirov
TI  - On Global Properties of Polynomials Guaranteed by Their Behavior on a Subset
JO  - Matematičeskie zametki
PY  - 2002
SP  - 338
EP  - 355
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a2/
LA  - ru
ID  - MZM_2002_72_3_a2
ER  - 
%0 Journal Article
%A N. Sh. Zagirov
%T On Global Properties of Polynomials Guaranteed by Their Behavior on a Subset
%J Matematičeskie zametki
%D 2002
%P 338-355
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a2/
%G ru
%F MZM_2002_72_3_a2
N. Sh. Zagirov. On Global Properties of Polynomials Guaranteed by Their Behavior on a Subset. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 338-355. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a2/

[1] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl

[2] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii (prostranstvo znakochuvstvitelnykh vesov, zhestkost i svoboda sistemy)”, Dokl. RAN, 332:6 (1993), 14–17

[3] Stechkin S. B., Ulyanov P. L., Podposledovatelnosti skhodimosti ryadov, Tr. MIAN, 86, Nauka, M., 1965 | MR

[4] Bernshtein S. N., “Ob odnom klasse interpolyatsionnykh formul”, Sobranie sochinenii, T. 2, M., 1954, 146–154

[5] Sharapudinov I. I., “Ob ogranichennosti v $C[-1,1]$ srednikh Valle-Pussena dlya diskretnykh summ Fure–Chebysheva”, Matem. sb., 187:1 (1996), 143–160 | MR | Zbl

[6] Ehrlich H., Zeller K., “Numeriche Abschätzung von Polynomen”, Z. Angew. Math. Mech., 45 (1965), T20–T22

[7] Ehrlich H., “Polynomen zwischen Gitter-Punkten”, Math. Z., 93 (1966), 144–153 | DOI | MR

[8] Coppersmith D., Rivlin T. J., “The growth of polynomials of equally-spaced points”, SIAM J. Math. Anal., 23 (1992), 970–983 | DOI | MR | Zbl

[9] Natanson I. P., Konstruktivnaya teoriya funktsii, M.–L., 1949 | Zbl

[10] Dolzhenko E. P., Sevastyanov E. A., “Ob opredelenii chebyshevskikh uzhei”, Vestn. MGU. Ser. 1. Matem., mekh., 1994, no. 3, 49–59 | MR | Zbl

[11] Karlin S., Stadden V., Chebyshevskie sistemy i ikh prilozhenie v analize i statistike, Nauka, M., 1976

[12] Privalov A. A., Teoriya interpolirovaniya funktsii, Kn. 1, Izd-vo Saratovskogo un-ta, Saratov, 1990

[13] Konyagin S. V., “Otsenki proizvodnykh ot mnogochlenov”, Dokl. AN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl

[14] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, M., 1960

[15] Sharapudinov I. I., “Ob otsenivanii normy algebraicheskogo polinoma po ego znacheniyam v uzlakh ravnomernoi setki”, Matem. sb., 188:12 (1997), 135–156 | MR | Zbl

[16] Sharapudinov I. I., Mnogochleny, ortogonalnye na setkakh. Teoriya i prilozheniya, DGPU, Makhachkala, 1997