On Projective Mappings
Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X,Y$ be Polish spaces, and let $\mathscr B_k$ be the $\sigma $-algebra generated by the projective class $L_{2k+1}$. A mapping $f\colon X\mapsto Y$ is called $K$-projective if $f^{-1}(E)\in \mathscr B_k$ for any Borel subset $E\subset Y$. The following theorem is our main result: for any $k$-projective mapping $f\colon X\mapsto Y$ there exist a Polish space $\widetilde X_S$, a dense subset $X_S\in \mathscr B_k$, and two continuous mappings $f_0, i: \widetilde X_S\to Y$ such that i) $f_0|_{X_S}=f\circ i|_{X_S}$; ii) $i|_{X_S}$ is a bijection.
@article{MZM_2002_72_3_a0,
     author = {S. S. Gabrielyan},
     title = {On {Projective} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a0/}
}
TY  - JOUR
AU  - S. S. Gabrielyan
TI  - On Projective Mappings
JO  - Matematičeskie zametki
PY  - 2002
SP  - 323
EP  - 329
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a0/
LA  - ru
ID  - MZM_2002_72_3_a0
ER  - 
%0 Journal Article
%A S. S. Gabrielyan
%T On Projective Mappings
%J Matematičeskie zametki
%D 2002
%P 323-329
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a0/
%G ru
%F MZM_2002_72_3_a0
S. S. Gabrielyan. On Projective Mappings. Matematičeskie zametki, Tome 72 (2002) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2002_72_3_a0/

[1] Kechris A. S., “Descriptive dynamics”, London Math. Soc. Lecture Notes, 277, 2000, 231–258 | MR | Zbl

[2] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[3] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 67:1 (1949), 107–150 | Zbl

[4] Birkgof G., Teoriya reshetok, Nauka, M., 1984

[5] Morse A. P., “Perfect blankets”, Trans. Amer. Math. Soc., 61:1 (1947), 418–442 | DOI | MR | Zbl

[6] Rao B. V., “Non-existence of certain Borel structures”, Fund. Math., 69 (1970), 241–242 | MR | Zbl