New Proof of the Semmes Inequality for the Derivative of the Rational Function
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 258-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the open disk $|z|1$ of the complex plane, we consider the following spaces of functions: the Bloch space $\mathscr B$; the Hardy–Sobolev space $H^\alpha _p$, $\alpha \ge 0$, $0$; and the Hardy–Besov space $B^\alpha _p$, $\alpha \ge 0$, $0$. It is shown that if all the poles of the rational function $R$ of degree $n$, $n=1,2,3,\dots $, lie in the domain $|z|>1$, then $\|R\|_{H^\alpha _{1/\alpha }}\le cn^\alpha \|R\|_{\mathscr B}$, $\|R\|_{B^\alpha _{1/\alpha }}\le cn^\alpha \|R\|_{\mathscr B}$, where $\alpha >0$ and $c >0$ depends only on $\alpha$ . The second of these inequalities for the case of the half-plane was obtained by Semmes in 1984. The proof given by Semmes was based on the use of Hankel operators, while our proof uses the special integral representation of rational functions.
@article{MZM_2002_72_2_a8,
     author = {A. A. Pekarskii},
     title = {New {Proof} of the {Semmes} {Inequality} for the {Derivative} of the {Rational} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--264},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - New Proof of the Semmes Inequality for the Derivative of the Rational Function
JO  - Matematičeskie zametki
PY  - 2002
SP  - 258
EP  - 264
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/
LA  - ru
ID  - MZM_2002_72_2_a8
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T New Proof of the Semmes Inequality for the Derivative of the Rational Function
%J Matematičeskie zametki
%D 2002
%P 258-264
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/
%G ru
%F MZM_2002_72_2_a8
A. A. Pekarskii. New Proof of the Semmes Inequality for the Derivative of the Rational Function. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 258-264. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/

[1] Semmes S., “Trace ideal criteria for Hankel operators and application to Besov space”, Integral Equations and Operator Theory, 7 (1984), 241–281 | DOI | MR | Zbl

[2] Peller V. V., “Operatory Gankelya klassa $\sigma_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113:4 (1980), 538–582 | MR

[3] Peller V. V., “Opisanie operatorov Gankelya klassa $\sigma_p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122:4 (1983), 481–510 | MR

[4] Rochberg R., “Decomposition theorems for Bergman spaces and their applications”, Operator and Functional Theory, Proc. NATO Adv. Study Inst. (Lancaster, July 16–24, 1984), D. Reidel Publ. Company, 1985, 225–277 | MR

[5] Pekarskii A. A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Matem. sb., 124:4 (1984), 571–588 | MR | Zbl

[6] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | Zbl

[7] Lorentz G. G., Golitschek M. V., Makovoz Y., Constructive Approximation. Advanced Problems, Spinger-Verlag, Berlin, 1996