New Proof of the Semmes Inequality for the Derivative of the Rational Function
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 258-264

Voir la notice de l'article provenant de la source Math-Net.Ru

In the open disk $|z|1$ of the complex plane, we consider the following spaces of functions: the Bloch space $\mathscr B$; the Hardy–Sobolev space $H^\alpha _p$, $\alpha \ge 0$, $0$; and the Hardy–Besov space $B^\alpha _p$, $\alpha \ge 0$, $0$. It is shown that if all the poles of the rational function $R$ of degree $n$, $n=1,2,3,\dots $, lie in the domain $|z|>1$, then $\|R\|_{H^\alpha _{1/\alpha }}\le cn^\alpha \|R\|_{\mathscr B}$, $\|R\|_{B^\alpha _{1/\alpha }}\le cn^\alpha \|R\|_{\mathscr B}$, where $\alpha >0$ and $c >0$ depends only on $\alpha$ . The second of these inequalities for the case of the half-plane was obtained by Semmes in 1984. The proof given by Semmes was based on the use of Hankel operators, while our proof uses the special integral representation of rational functions.
@article{MZM_2002_72_2_a8,
     author = {A. A. Pekarskii},
     title = {New {Proof} of the {Semmes} {Inequality} for the {Derivative} of the {Rational} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--264},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - New Proof of the Semmes Inequality for the Derivative of the Rational Function
JO  - Matematičeskie zametki
PY  - 2002
SP  - 258
EP  - 264
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/
LA  - ru
ID  - MZM_2002_72_2_a8
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T New Proof of the Semmes Inequality for the Derivative of the Rational Function
%J Matematičeskie zametki
%D 2002
%P 258-264
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/
%G ru
%F MZM_2002_72_2_a8
A. A. Pekarskii. New Proof of the Semmes Inequality for the Derivative of the Rational Function. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 258-264. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a8/