Norm Estimates for Multiplication Operators in Hilbert Algebras
Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 283-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that for the bilinear operator defined by the operation of multiplication in an arbitrary associative algebra $\mathbf V$ with unit $\mathbf e_0$ over the fields $\mathbb R$ or $\mathbb C$, the infimum of its norms with respect to all scalar products in this algebra (with $||\mathbf e_0||=1$) is either infinite or at most $\sqrt {4/3}$. Sufficient conditions for this bound to be not less than $\sqrt {4/3}$ are obtained. The finiteness of this bound for infinite-dimensional Grassmann algebras was first proved by Kupsh and Smolyanov (this was used for constructing a functional representation for Fock superalgebras).
@article{MZM_2002_72_2_a11,
     author = {A. N. Urinovskii},
     title = {Norm {Estimates} for {Multiplication} {Operators} in {Hilbert} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a11/}
}
TY  - JOUR
AU  - A. N. Urinovskii
TI  - Norm Estimates for Multiplication Operators in Hilbert Algebras
JO  - Matematičeskie zametki
PY  - 2002
SP  - 283
EP  - 291
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a11/
LA  - ru
ID  - MZM_2002_72_2_a11
ER  - 
%0 Journal Article
%A A. N. Urinovskii
%T Norm Estimates for Multiplication Operators in Hilbert Algebras
%J Matematičeskie zametki
%D 2002
%P 283-291
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a11/
%G ru
%F MZM_2002_72_2_a11
A. N. Urinovskii. Norm Estimates for Multiplication Operators in Hilbert Algebras. Matematičeskie zametki, Tome 72 (2002) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/MZM_2002_72_2_a11/

[1] Kupsh J., Smolyanov O. G., “Hilbert norms for graded algebras”, Proc. Amer. Math. Soc., 128:6 (2000), 1647–1653 | DOI | MR