Nonlinear Commutation Relations: Representations by Point-Supported Operators
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 54-73

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a class of non-Lie commutation relations admitting representations by point-supported operators (i.e., by operators whose integral kernels are generalized point-supported functions). For such relations we construct all operator-irreducible representations (up to equivalence). Each representation is realized by point-supported operators in the Hilbert space of antiholomorphic functions. We show that the reproducing kernels of these spaces can be represented via hypergeometric series and the theta function, as well as via their modifications. We construct coherent states that intertwine abstract representations with irreducible representations.
@article{MZM_2002_72_1_a5,
     author = {M. V. Karasev and E. M. Novikova},
     title = {Nonlinear {Commutation} {Relations:} {Representations} by {Point-Supported} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {54--73},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - E. M. Novikova
TI  - Nonlinear Commutation Relations: Representations by Point-Supported Operators
JO  - Matematičeskie zametki
PY  - 2002
SP  - 54
EP  - 73
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/
LA  - ru
ID  - MZM_2002_72_1_a5
ER  - 
%0 Journal Article
%A M. V. Karasev
%A E. M. Novikova
%T Nonlinear Commutation Relations: Representations by Point-Supported Operators
%J Matematičeskie zametki
%D 2002
%P 54-73
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/
%G ru
%F MZM_2002_72_1_a5
M. V. Karasev; E. M. Novikova. Nonlinear Commutation Relations: Representations by Point-Supported Operators. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/