Nonlinear Commutation Relations: Representations by Point-Supported Operators
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 54-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a class of non-Lie commutation relations admitting representations by point-supported operators (i.e., by operators whose integral kernels are generalized point-supported functions). For such relations we construct all operator-irreducible representations (up to equivalence). Each representation is realized by point-supported operators in the Hilbert space of antiholomorphic functions. We show that the reproducing kernels of these spaces can be represented via hypergeometric series and the theta function, as well as via their modifications. We construct coherent states that intertwine abstract representations with irreducible representations.
@article{MZM_2002_72_1_a5,
     author = {M. V. Karasev and E. M. Novikova},
     title = {Nonlinear {Commutation} {Relations:} {Representations} by {Point-Supported} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {54--73},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - E. M. Novikova
TI  - Nonlinear Commutation Relations: Representations by Point-Supported Operators
JO  - Matematičeskie zametki
PY  - 2002
SP  - 54
EP  - 73
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/
LA  - ru
ID  - MZM_2002_72_1_a5
ER  - 
%0 Journal Article
%A M. V. Karasev
%A E. M. Novikova
%T Nonlinear Commutation Relations: Representations by Point-Supported Operators
%J Matematičeskie zametki
%D 2002
%P 54-73
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/
%G ru
%F MZM_2002_72_1_a5
M. V. Karasev; E. M. Novikova. Nonlinear Commutation Relations: Representations by Point-Supported Operators. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/

[1] Biedenharn L. C., “The quantum group $SU_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A, 22 (1989), L873–L878 | DOI | MR | Zbl

[2] Drinfeld V. G., “Quantum groups”, Proc. of Intern. Congress of Math. (Berkeley), Amer. Math. Soc., Providence, 1987, 789–820

[3] Faddeev L. D., Reshetikhin N. Yu., Takhtadzhyan L. A., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 | MR

[4] Gelfand I. M., Fairlie D. B., “The algebra of Weyl symmetrized polynomials and its quantum extension”, Comm. Math. Phys., 136 (1991), 487–499 | DOI | MR | Zbl

[5] Jimbo M., “A $q$-difference analog of $Ug$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[6] Kulish P. P., Reshetikhin N. Yu., “Universal $R$-matrix of the quantum superalgebra $\operatorname{osp}(2|1)$”, Lett. Math. Phys., 18:2 (1989), 143–149 | DOI | MR | Zbl

[7] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funktsion. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[8] Granovskii Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Phys., 217 (1992), 1–20 | DOI | MR

[9] Granovckii Ya. I., Zhedanov A. S., Lutzenko I. M., “Quadratic algebra as a “hidden” symmetry of the Hartmann potential”, J. Phys. A, 24 (1991), 3887–3894 | DOI | MR

[10] Maslov V. P., “Primenenie metoda uporyadochennykh operatorov dlya polucheniya tochnykh reshenii”, TMF, 33:2 (1977), 185–209 | MR | Zbl

[11] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[12] de Azcarraga J. A., Ellinas D., “Complex analytic realizations for quantum algebras”, J. Math. Phys., 35:3 (1994), 1322–1333 | DOI | MR | Zbl

[13] Bonatsos D., Daskaloyannis C., “General deformation schemes and $N=2$ supersymmetric quantum mechanics”, Phys. Lett. B, 307 (1993), 100–105 | DOI | MR

[14] Chaichian M., Ellinas D., Kulish P., “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model”, Phys. Rev. Lett., 65:8 (1990), 980–983 | DOI | MR | Zbl

[15] Daskaloyannis S., “Generalized deformed oscillator and nonlinear algebras”, J. Phys. A, 24 (1991), L789–L794 | DOI | MR | Zbl

[16] Delbecq C., Quesne C., “Representation theory and $q$-boson realizations of Witten's $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$ deformations”, Phys. Lett. B, 300 (1993), 227–233 | DOI | MR

[17] Delbecq C., Quesne C., “Nonlinear deformations of $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$ generalizing Witten's algebra”, J. Phys. A, 26 (1993), L127–L134 | DOI | MR | Zbl

[18] Gray R. W., Nelson C. A., “A completeness relation for the $q$-analogue coherent states by $q$-integration”, J. Phys. A, 23 (1990), L945–L950 | DOI | Zbl

[19] Jannussis A., “New deformed Heisenberg oscillator”, J. Phys. A, 26 (1993), L233–L237 | DOI | MR | Zbl

[20] Katriel J., Quesne C., “Recursively minimal-deformed oscillators”, J. Math. Phys., 37:4 (1996), 1650–1661 | DOI | MR | Zbl

[21] Maximov V., Odzijewicz A., “The $q$-deformation of quantum mechanics of one degree of freedom”, J. Math. Phys., 36:4 (1995), 1681–1690 | DOI | MR | Zbl

[22] Meljanac S., Milekovic M., Pallua S., “Unified view of deformed single-mode oscillator algebras”, Phys. Lett. B, 328 (1994), 55–59 | DOI | MR

[23] Odaka K., Kishi T., Kamefuchi S., “On quantization of simple harmonic oscillators”, J. Phys. A: Math. Geom., 24 (1991), L591–L596 | DOI | MR | Zbl

[24] Quesne C., “Coherent states, $K$-matrix theory, and $q$-boson realizations of the quantum algebra $\operatorname{su}_q(2)$”, Phys. Lett. A, 153 (1991), 303–307 | DOI | MR

[25] Roček M., “Representation theory of the nonlinear $\operatorname{su}(2)$ algebra”, Phys. Lett. B, 255:4 (1991), 554–557 | DOI | MR

[26] Witten E., “Gauge theories, vertex models, and quantum groups”, Nuclear Phys. B, 30 (1990), 285–346 | DOI | MR

[27] Fock V. A., “Verallgemeinerung und Lösung der Diracschen statistischen Gleichung”, Z. Phys., 49 (1928), 339–357 | DOI

[28] Fock V. A., “Konfigurationsraum und zweite Quantelung”, Z. Phys., 75 (1932), 622–647 | DOI | Zbl

[29] Dirac P. A. M., “Quantum electrodynamics”, Comm. Dublin Inst. Adv. Stud. Ser. A, 1 (1943), 1–36 | Zbl

[30] Cook J. M., “The mathematics of second quantization”, Trans. Amer. Math. Soc., 74 (1953), 222–245 | DOI | MR | Zbl

[31] Onofri E., “A note on coherent state representation of Lie group”, J. Math. Phys., 16 (1975), 1087–1089 | DOI | MR | Zbl

[32] Perelomov A. M., “Coherent states for arbitrary Lie groups”, Comm. Math. Phys., 26:3 (1972), 222–236 | DOI | MR | Zbl

[33] Perelomov A. M., Generalized Coherent States and Their Applications, Springer-Verlag, Berlin–New York, 1986

[34] Arik M., Coon D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR

[35] Kulish P. P., “Kontraktsiya kvantovykh algebr i $q$-ostsillyatory”, TMF, 86:1 (1991), 157–160 | MR | Zbl

[36] Macfarlane A. F., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\operatorname{SU}(2)_q$”, J. Phys. A, 22 (1989), 4581–4588 | DOI | MR | Zbl

[37] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 1134–1167 | MR | Zbl

[38] Berezin F. A., “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38 (1974), 1116–1175 | MR | Zbl

[39] Berezin F. A., “Kvantovanie v kompleksnykh simmetricheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 39 (1975), 363–402 | MR | Zbl

[40] Berezin F. A., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR

[41] Klauder J. R., “Continuous representation theory”, J. Math. Phys., 4 (1963), 1055–1073 | DOI | MR | Zbl

[42] Karasev M. V., Novikova E. M., “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, ed. M. V. Karasev, Publ. AMS, Providence (RI), 1998, 1–202 | MR

[43] Karasev M. V., Novikova E. M., “Kogerentnye preobrazovaniya i neprivodimye predstavleniya, sootvetstvuyuschie kompleksnym strukturam na tsilindre i tore”, Matem. zametki, 70:6 (2001), 854–874 | MR | Zbl

[44] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1974