Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_1_a5, author = {M. V. Karasev and E. M. Novikova}, title = {Nonlinear {Commutation} {Relations:} {Representations} by {Point-Supported} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {54--73}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/} }
TY - JOUR AU - M. V. Karasev AU - E. M. Novikova TI - Nonlinear Commutation Relations: Representations by Point-Supported Operators JO - Matematičeskie zametki PY - 2002 SP - 54 EP - 73 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/ LA - ru ID - MZM_2002_72_1_a5 ER -
M. V. Karasev; E. M. Novikova. Nonlinear Commutation Relations: Representations by Point-Supported Operators. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 54-73. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a5/
[1] Biedenharn L. C., “The quantum group $SU_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A, 22 (1989), L873–L878 | DOI | MR | Zbl
[2] Drinfeld V. G., “Quantum groups”, Proc. of Intern. Congress of Math. (Berkeley), Amer. Math. Soc., Providence, 1987, 789–820
[3] Faddeev L. D., Reshetikhin N. Yu., Takhtadzhyan L. A., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 | MR
[4] Gelfand I. M., Fairlie D. B., “The algebra of Weyl symmetrized polynomials and its quantum extension”, Comm. Math. Phys., 136 (1991), 487–499 | DOI | MR | Zbl
[5] Jimbo M., “A $q$-difference analog of $Ug$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[6] Kulish P. P., Reshetikhin N. Yu., “Universal $R$-matrix of the quantum superalgebra $\operatorname{osp}(2|1)$”, Lett. Math. Phys., 18:2 (1989), 143–149 | DOI | MR | Zbl
[7] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funktsion. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl
[8] Granovskii Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Phys., 217 (1992), 1–20 | DOI | MR
[9] Granovckii Ya. I., Zhedanov A. S., Lutzenko I. M., “Quadratic algebra as a “hidden” symmetry of the Hartmann potential”, J. Phys. A, 24 (1991), 3887–3894 | DOI | MR
[10] Maslov V. P., “Primenenie metoda uporyadochennykh operatorov dlya polucheniya tochnykh reshenii”, TMF, 33:2 (1977), 185–209 | MR | Zbl
[11] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl
[12] de Azcarraga J. A., Ellinas D., “Complex analytic realizations for quantum algebras”, J. Math. Phys., 35:3 (1994), 1322–1333 | DOI | MR | Zbl
[13] Bonatsos D., Daskaloyannis C., “General deformation schemes and $N=2$ supersymmetric quantum mechanics”, Phys. Lett. B, 307 (1993), 100–105 | DOI | MR
[14] Chaichian M., Ellinas D., Kulish P., “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model”, Phys. Rev. Lett., 65:8 (1990), 980–983 | DOI | MR | Zbl
[15] Daskaloyannis S., “Generalized deformed oscillator and nonlinear algebras”, J. Phys. A, 24 (1991), L789–L794 | DOI | MR | Zbl
[16] Delbecq C., Quesne C., “Representation theory and $q$-boson realizations of Witten's $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$ deformations”, Phys. Lett. B, 300 (1993), 227–233 | DOI | MR
[17] Delbecq C., Quesne C., “Nonlinear deformations of $\operatorname{su}(2)$ and $\operatorname{su}(1,1)$ generalizing Witten's algebra”, J. Phys. A, 26 (1993), L127–L134 | DOI | MR | Zbl
[18] Gray R. W., Nelson C. A., “A completeness relation for the $q$-analogue coherent states by $q$-integration”, J. Phys. A, 23 (1990), L945–L950 | DOI | Zbl
[19] Jannussis A., “New deformed Heisenberg oscillator”, J. Phys. A, 26 (1993), L233–L237 | DOI | MR | Zbl
[20] Katriel J., Quesne C., “Recursively minimal-deformed oscillators”, J. Math. Phys., 37:4 (1996), 1650–1661 | DOI | MR | Zbl
[21] Maximov V., Odzijewicz A., “The $q$-deformation of quantum mechanics of one degree of freedom”, J. Math. Phys., 36:4 (1995), 1681–1690 | DOI | MR | Zbl
[22] Meljanac S., Milekovic M., Pallua S., “Unified view of deformed single-mode oscillator algebras”, Phys. Lett. B, 328 (1994), 55–59 | DOI | MR
[23] Odaka K., Kishi T., Kamefuchi S., “On quantization of simple harmonic oscillators”, J. Phys. A: Math. Geom., 24 (1991), L591–L596 | DOI | MR | Zbl
[24] Quesne C., “Coherent states, $K$-matrix theory, and $q$-boson realizations of the quantum algebra $\operatorname{su}_q(2)$”, Phys. Lett. A, 153 (1991), 303–307 | DOI | MR
[25] Roček M., “Representation theory of the nonlinear $\operatorname{su}(2)$ algebra”, Phys. Lett. B, 255:4 (1991), 554–557 | DOI | MR
[26] Witten E., “Gauge theories, vertex models, and quantum groups”, Nuclear Phys. B, 30 (1990), 285–346 | DOI | MR
[27] Fock V. A., “Verallgemeinerung und Lösung der Diracschen statistischen Gleichung”, Z. Phys., 49 (1928), 339–357 | DOI
[28] Fock V. A., “Konfigurationsraum und zweite Quantelung”, Z. Phys., 75 (1932), 622–647 | DOI | Zbl
[29] Dirac P. A. M., “Quantum electrodynamics”, Comm. Dublin Inst. Adv. Stud. Ser. A, 1 (1943), 1–36 | Zbl
[30] Cook J. M., “The mathematics of second quantization”, Trans. Amer. Math. Soc., 74 (1953), 222–245 | DOI | MR | Zbl
[31] Onofri E., “A note on coherent state representation of Lie group”, J. Math. Phys., 16 (1975), 1087–1089 | DOI | MR | Zbl
[32] Perelomov A. M., “Coherent states for arbitrary Lie groups”, Comm. Math. Phys., 26:3 (1972), 222–236 | DOI | MR | Zbl
[33] Perelomov A. M., Generalized Coherent States and Their Applications, Springer-Verlag, Berlin–New York, 1986
[34] Arik M., Coon D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR
[35] Kulish P. P., “Kontraktsiya kvantovykh algebr i $q$-ostsillyatory”, TMF, 86:1 (1991), 157–160 | MR | Zbl
[36] Macfarlane A. F., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\operatorname{SU}(2)_q$”, J. Phys. A, 22 (1989), 4581–4588 | DOI | MR | Zbl
[37] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 1134–1167 | MR | Zbl
[38] Berezin F. A., “Kvantovanie”, Izv. AN SSSR. Ser. matem., 38 (1974), 1116–1175 | MR | Zbl
[39] Berezin F. A., “Kvantovanie v kompleksnykh simmetricheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 39 (1975), 363–402 | MR | Zbl
[40] Berezin F. A., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR
[41] Klauder J. R., “Continuous representation theory”, J. Math. Phys., 4 (1963), 1055–1073 | DOI | MR | Zbl
[42] Karasev M. V., Novikova E. M., “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, ed. M. V. Karasev, Publ. AMS, Providence (RI), 1998, 1–202 | MR
[43] Karasev M. V., Novikova E. M., “Kogerentnye preobrazovaniya i neprivodimye predstavleniya, sootvetstvuyuschie kompleksnym strukturam na tsilindre i tore”, Matem. zametki, 70:6 (2001), 854–874 | MR | Zbl
[44] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1974