Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 35-37
Voir la notice de l'article provenant de la source Math-Net.Ru
A coloring of the vertices of a graph is called acyclic if the ends of each edge are colored in distinct colors, and there are no two-colored cycles. Suppose each face of rank $k$, $k\ge 4$, in a map on a surface $S^N$ is replaced by the clique having the same number of vertices. It is proved in [1] that the resulting pseudograph admits an acyclic coloring with the number of colors depending linearly on $N$ and $k$. In the present paper we prove a sharper estimate $55(-Nk)^{4/7}$ for the number of colors provided that $k\ge 1$ and $-N\ge 5^7k^{4/3}$.
@article{MZM_2002_72_1_a2,
author = {O. V. Borodin and A. V. Kostochka and A. Raspaud and E. Sopena},
title = {Estimating the {Minimal} {Number} of {Colors} in {Acyclic} {-Strong} {Colorings} of {Maps} on {Surfaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {35--37},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a2/}
}
TY - JOUR AU - O. V. Borodin AU - A. V. Kostochka AU - A. Raspaud AU - E. Sopena TI - Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces JO - Matematičeskie zametki PY - 2002 SP - 35 EP - 37 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a2/ LA - ru ID - MZM_2002_72_1_a2 ER -
%0 Journal Article %A O. V. Borodin %A A. V. Kostochka %A A. Raspaud %A E. Sopena %T Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces %J Matematičeskie zametki %D 2002 %P 35-37 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a2/ %G ru %F MZM_2002_72_1_a2
O. V. Borodin; A. V. Kostochka; A. Raspaud; E. Sopena. Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 35-37. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a2/