On Primitive Representations of Minimax Nilpotent Groups
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 131-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show, in particular, that in the class of minimax two-step nilpotent groups only finitely generated groups can admit exact irreducible primitive representations over a finitely generated field of characteristic zero. We also suggest some approaches to studying induced representations of nilpotent groups of finite rank.
@article{MZM_2002_72_1_a11,
     author = {A. V. Tushev},
     title = {On {Primitive} {Representations} of {Minimax} {Nilpotent} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a11/}
}
TY  - JOUR
AU  - A. V. Tushev
TI  - On Primitive Representations of Minimax Nilpotent Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 131
EP  - 144
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a11/
LA  - ru
ID  - MZM_2002_72_1_a11
ER  - 
%0 Journal Article
%A A. V. Tushev
%T On Primitive Representations of Minimax Nilpotent Groups
%J Matematičeskie zametki
%D 2002
%P 131-144
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a11/
%G ru
%F MZM_2002_72_1_a11
A. V. Tushev. On Primitive Representations of Minimax Nilpotent Groups. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 131-144. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a11/

[1] Harper D. L., “Primitivity in representations of polycyclic groups”, Math. Proc. Camb. Phil. Soc., 88 (1980), 15–31 | DOI | MR | Zbl

[2] Harper D. L., “Primitive irreducible representations of nilpotent groups”, Math. Proc. Camb. Phil. Soc., 82 (1977), 241–247 | DOI | MR | Zbl

[3] Zalesskii A. E., “O neprivodimykh predstavleniyakh konechno porozhdennykh nilpotentnykh grupp bez krucheniya”, Matem. zametki, 9:2 (1971), 199–210 | MR | Zbl

[4] Leng S., Algebra, Mir, M., 1968

[5] Brookes C. J. C., Brown K. A., “Primitive group rings and Noetherian rings of quotients”, Trans. Amer. Math. Soc., 288:2 (1985), 605–623 | DOI | MR | Zbl

[6] Brookes C. J. B., “Modules over polycyclic groups”, Proc. London Math. Soc., 57:3 (1988), 88–108 | DOI | MR | Zbl

[7] Kropheller P. H., Linnell P. A., Moody J. A., “Applications of $a$ new $K$-theoretic theorem to soluble group rings”, Proc. Amer. Math. Soc., 104:3 (1988), 675–684 | DOI | MR

[8] Passman D. S., “Algebraic crossed products”, Contemporary Math., 43 (1985), 209–225 | MR | Zbl

[9] Passman D. S., The Algebraic Structure of Group Rings, Wiley, New York, 1977 | Zbl

[10] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[11] Hall P., “Finiteness condition for soluble groups”, Proc. London Math. Soc., 4:16 (1954), 419–436 | DOI | MR | Zbl

[12] Tushev A. V., “Neterovy moduli nad abelevymi gruppami konechnogo svobodnogo ranga”, Ukr. matem. zh., 43:7, 8 (1991), 1042–1048 | MR

[13] Burbaki N., Kommutativnaya algebra, Mir, M., 1971

[14] Brookes C. J. B., “Ideals in group rings of soluble groups of finite rank”, Math. Proc. Cambridge. Phil. Soc., 97 (1985), 27–49 | DOI | MR | Zbl

[15] Tushev A. V., “O primitivnykh predstavleniyakh razreshimykh grupp”, Matem. sb., 191:11 (2000), 117–160 | MR

[16] Roseblade J. E., “Group rings of polycyclic groups”, J. Pure Appl. Algebra, 3 (1973), 307–328 | DOI | MR | Zbl

[17] Charin V. S., “O gruppakh avtomorfizmov nilpotentnykh grupp”, Ukr. matem. zh., VI:3 (1954), 295–304

[18] Kargapolov M. I., Merzlyakov Yu. M., Osnovy teorii grupp, Nauka, M., 1982 | Zbl

[19] Roseblade J. E., “Prime ideals in group rings of polycyclic groups”, Proc. London Math. Soc., 36:3 (1976), 385–447 | DOI | MR