Compatible Poisson Brackets on Lie Algebras
Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 11-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the relationship between the representation of an integrable system as an $L$-$A$-pair with a spectral parameter and the existence of two compatible Hamiltonian representations of this system. We consider examples of compatible Poisson brackets on Lie algebras, as well as the corresponding integrable Hamiltonian systems and Lax representations.
@article{MZM_2002_72_1_a1,
     author = {A. V. Bolsinov and A. V. Borisov},
     title = {Compatible {Poisson} {Brackets} on {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--34},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. V. Borisov
TI  - Compatible Poisson Brackets on Lie Algebras
JO  - Matematičeskie zametki
PY  - 2002
SP  - 11
EP  - 34
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/
LA  - ru
ID  - MZM_2002_72_1_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. V. Borisov
%T Compatible Poisson Brackets on Lie Algebras
%J Matematičeskie zametki
%D 2002
%P 11-34
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/
%G ru
%F MZM_2002_72_1_a1
A. V. Bolsinov; A. V. Borisov. Compatible Poisson Brackets on Lie Algebras. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/

[1] Bolsinov A. V., “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl

[2] Bolsinov A. V., “Mnogomernye sluchai Eilera i Klebsha i lievy puchki”, Tr. seminara po vektornomu i tenzornomu analizu, 24, Izd-vo MGU, M., 1991, 8–12 | MR

[3] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funktsion. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl

[4] Mescheryakov M. V., “O kharakteristicheskom svoistve tenzora inertsii mnogomernogo tverdogo tela”, UMN, 38:5 (1983), 201–202 | MR | Zbl

[5] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 180 (1996), 529–586 | DOI | MR | Zbl

[6] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. II: Theorem on symmetries and its applications”, Comm. Math. Phys., 184 (1997), 301–365 | DOI | MR | Zbl

[7] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[8] Panasyuk A., “Veronese webs for bihamiltonian structures of higher corank”, Poisson Geometry, Banach Center Publ., 51, 2000, 251–261 | MR | Zbl

[9] Gelfand I. M., Zakharevich I. S., “On the local geometry of a bihamiltonian structure”, The Gelfand Mathematical Seminars, 1990–1992, Birkhäuser, Boston, 1993, 51–112 | Zbl

[10] Gelfand I., Zakharevich I., “Webs, Veronese curves, and bi-Hamiltonian systems”, J. Funct. Anal., 99:1 (1991), 150–178 | DOI | MR | Zbl

[11] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funktsion. analiz i ego prilozh., 17:4 (1983), 17–33 | MR

[12] Olver P., “Canonical forms and integrability of bi-Hamiltonian systems”, Phys. Lett. A, 148:3, 4 (1990), 177–187 | DOI | MR

[13] Turiel F. G., “Classification locale d'un couple des formes sympléctiques Poisson-compatible”, C. R. Acad. Sci. Paris. Sér. I, 308 (1989), 575–578 | MR | Zbl

[14] Brouzet R., “About the existence of recursion operator for completely integrable Hamiltonian systems near a Liouville torus”, J. Math. Rhys., 34 (1993), 1309–1313 | DOI | MR | Zbl

[15] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–358 | DOI

[16] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 386–415

[17] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vektornomu i tenzornomu analizu, no. 19, Izd-vo MGU, M., 1979, 3–94

[18] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funktsion. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[19] Adler M., van Moerbeke P., “Geodesic flow on $so(4)$ and intersection of quadrics”, Proc. Nat. Acad. Sci. USA, 81 (1984), 4613–4616 | DOI | MR | Zbl

[20] Reyman A. G., Semenov-Tyan-Shansky M. A., “A new integrable case of the motion of the $4$-dimensional rigid body”, Comm. Math. Phys., 105 (1986), 461–472 | DOI | MR | Zbl

[21] Zhukovskii N. E., “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu. I; II; III”, Zhurnal fiz. khim. obschestva, otd. 1, 17:6 (1885), 81–113; 7, 145–199; 8, 231–280

[22] Fedorov Yu. N., “Predstavleniya Laksa so spektralnym parametrom, opredelennom na nakrytiyakh superellipticheskikh krivykh”, Matem. zametki, 54:1 (1993), 94–109 | MR | Zbl

[23] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | Zbl

[24] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[25] Olshanetskii M. A., Perelomov A. G., Reiman A. G., Semenov-Tyan-Shanskii M. A., “Integriruemye sistemy, II”, Sovremennye problemy matematiki. Fundament. napravleniya, 16, VINITI, M., 1987, 86–226 | MR

[26] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funktsion. analiz i ego prilozh., 22:2 (1988), 87–88 | MR

[27] Bobenko A. I., “Ob integrirovanii uravnenii Eilera na $e(3)$ i $so(4)$. Izomorfizm integriruemykh sluchaev”, Funktsion. analiz i ego prilozh., 20:1 (1986), 64–66 | MR | Zbl

[28] Bolsinov A. V., Fedorov Yu. N., “Mnogomernye integriruemye obobscheniya sistem Steklova–Lyapunova”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 6, 53–56 | MR

[29] Kötter F., “Über die von Steklow und Liapunow entdeckten integralen Falle der Bewegung eines starren Körpers in einer Flüssigkeit”, Sitzungsber. Königlich preuslischen Acad. Wiss. Berlin, 6 (1900), 79–87

[30] Bogoyavlenskij O. I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl