Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_72_1_a1, author = {A. V. Bolsinov and A. V. Borisov}, title = {Compatible {Poisson} {Brackets} on {Lie} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {11--34}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/} }
A. V. Bolsinov; A. V. Borisov. Compatible Poisson Brackets on Lie Algebras. Matematičeskie zametki, Tome 72 (2002) no. 1, pp. 11-34. http://geodesic.mathdoc.fr/item/MZM_2002_72_1_a1/
[1] Bolsinov A. V., “Soglasovannye skobki Puassona na algebrakh Li i polnota semeistv funktsii v involyutsii”, Izv. AN SSSR. Ser. matem., 55:1 (1991), 68–92 | MR | Zbl
[2] Bolsinov A. V., “Mnogomernye sluchai Eilera i Klebsha i lievy puchki”, Tr. seminara po vektornomu i tenzornomu analizu, 24, Izd-vo MGU, M., 1991, 8–12 | MR
[3] Gelfand I. M., Dorfman I. Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funktsion. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl
[4] Mescheryakov M. V., “O kharakteristicheskom svoistve tenzora inertsii mnogomernogo tverdogo tela”, UMN, 38:5 (1983), 201–202 | MR | Zbl
[5] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. I: Incompatible Poisson structures”, Comm. Math. Phys., 180 (1996), 529–586 | DOI | MR | Zbl
[6] Bogoyavlenskij O. I., “Theory of tensor invariants of integrable Hamiltonian systems. II: Theorem on symmetries and its applications”, Comm. Math. Phys., 184 (1997), 301–365 | DOI | MR | Zbl
[7] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl
[8] Panasyuk A., “Veronese webs for bihamiltonian structures of higher corank”, Poisson Geometry, Banach Center Publ., 51, 2000, 251–261 | MR | Zbl
[9] Gelfand I. M., Zakharevich I. S., “On the local geometry of a bihamiltonian structure”, The Gelfand Mathematical Seminars, 1990–1992, Birkhäuser, Boston, 1993, 51–112 | Zbl
[10] Gelfand I., Zakharevich I., “Webs, Veronese curves, and bi-Hamiltonian systems”, J. Funct. Anal., 99:1 (1991), 150–178 | DOI | MR | Zbl
[11] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funktsion. analiz i ego prilozh., 17:4 (1983), 17–33 | MR
[12] Olver P., “Canonical forms and integrability of bi-Hamiltonian systems”, Phys. Lett. A, 148:3, 4 (1990), 177–187 | DOI | MR
[13] Turiel F. G., “Classification locale d'un couple des formes sympléctiques Poisson-compatible”, C. R. Acad. Sci. Paris. Sér. I, 308 (1989), 575–578 | MR | Zbl
[14] Brouzet R., “About the existence of recursion operator for completely integrable Hamiltonian systems near a Liouville torus”, J. Math. Rhys., 34 (1993), 1309–1313 | DOI | MR | Zbl
[15] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–358 | DOI
[16] Mischenko A. S., Fomenko A. T., “Uravneniya Eilera na konechnomernykh gruppakh Li”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 386–415
[17] Mischenko A. S., Fomenko A. T., “Integriruemost uravnenii Eilera na poluprostykh algebrakh Li”, Trudy seminara po vektornomu i tenzornomu analizu, no. 19, Izd-vo MGU, M., 1979, 3–94
[18] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funktsion. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl
[19] Adler M., van Moerbeke P., “Geodesic flow on $so(4)$ and intersection of quadrics”, Proc. Nat. Acad. Sci. USA, 81 (1984), 4613–4616 | DOI | MR | Zbl
[20] Reyman A. G., Semenov-Tyan-Shansky M. A., “A new integrable case of the motion of the $4$-dimensional rigid body”, Comm. Math. Phys., 105 (1986), 461–472 | DOI | MR | Zbl
[21] Zhukovskii N. E., “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu. I; II; III”, Zhurnal fiz. khim. obschestva, otd. 1, 17:6 (1885), 81–113; 7, 145–199; 8, 231–280
[22] Fedorov Yu. N., “Predstavleniya Laksa so spektralnym parametrom, opredelennom na nakrytiyakh superellipticheskikh krivykh”, Matem. zametki, 54:1 (1993), 94–109 | MR | Zbl
[23] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | Zbl
[24] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR
[25] Olshanetskii M. A., Perelomov A. G., Reiman A. G., Semenov-Tyan-Shanskii M. A., “Integriruemye sistemy, II”, Sovremennye problemy matematiki. Fundament. napravleniya, 16, VINITI, M., 1987, 86–226 | MR
[26] Reiman A. G., Semenov-Tyan-Shanskii M. A., “Laksovo predstavlenie so spektralnym parametrom dlya volchka Kovalevskoi i ego obobschenii”, Funktsion. analiz i ego prilozh., 22:2 (1988), 87–88 | MR
[27] Bobenko A. I., “Ob integrirovanii uravnenii Eilera na $e(3)$ i $so(4)$. Izomorfizm integriruemykh sluchaev”, Funktsion. analiz i ego prilozh., 20:1 (1986), 64–66 | MR | Zbl
[28] Bolsinov A. V., Fedorov Yu. N., “Mnogomernye integriruemye obobscheniya sistem Steklova–Lyapunova”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 6, 53–56 | MR
[29] Kötter F., “Über die von Steklow und Liapunow entdeckten integralen Falle der Bewegung eines starren Körpers in einer Flüssigkeit”, Sitzungsber. Königlich preuslischen Acad. Wiss. Berlin, 6 (1900), 79–87
[30] Bogoyavlenskij O. I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl