Hugoniót--Maslov Conditions for Vortex Singular Solutions of the Shallow Water Equations
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 902-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the “phase” of vortex singular solutions of the shallow water equations we justify the Hamilton–Jacobi equation corresponding to the hydrodynamical mode of perturbation propagation. We also obtain the next correction to the Cauchy–Riemann conditions describing how the singular part of the solution affects the smooth background.
@article{MZM_2002_71_6_a9,
     author = {E. S. Semenov},
     title = {Hugoni\'ot--Maslov {Conditions} for {Vortex} {Singular} {Solutions} of the {Shallow} {Water} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--913},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a9/}
}
TY  - JOUR
AU  - E. S. Semenov
TI  - Hugoniót--Maslov Conditions for Vortex Singular Solutions of the Shallow Water Equations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 902
EP  - 913
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a9/
LA  - ru
ID  - MZM_2002_71_6_a9
ER  - 
%0 Journal Article
%A E. S. Semenov
%T Hugoniót--Maslov Conditions for Vortex Singular Solutions of the Shallow Water Equations
%J Matematičeskie zametki
%D 2002
%P 902-913
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a9/
%G ru
%F MZM_2002_71_6_a9
E. S. Semenov. Hugoniót--Maslov Conditions for Vortex Singular Solutions of the Shallow Water Equations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 902-913. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a9/

[1] Trev F., “Propagation of singularities and semi-global existence theorems for (pseudo-) differential operators of principal type”, Ann. Math., 108 (1978), 569–609 | DOI | MR

[2] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, UMN, 35:2 (1980), 252–253

[3] Dobrokhotov S. Yu., Pankrashkin K. V., Semenov E. S., “Proof of Maslov's conjecture about the structure of weak-point singular solutions of the shallow water equations”, Russian J. Math. Phys., 8:1 (2001), 25–54 | MR | Zbl

[4] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, I”, Russian J. Math. Phys., 6:2 (1999), 137–173 | MR | Zbl

[5] Whitham G. B., Linear and Nonlinear Waves, Wiley Interscience, 1974 | Zbl

[6] Zhikharev V. N., O neobkhodimykh usloviyakh suschestvovaniya i edinstvennosti tipa resheniya so slaboi rasprostranyayuscheisya osobennostyu, sosredotochennoi v tochke, dlya uravnenii gidrodinamiki v sluchae dvukh prostranstvennykh peremennykh, Dep. VINITI No. V86–8148, VINITI, M., 1986

[7] Milnor Dzh., Teoriya Morsa, Mir, M., 1965

[8] Dobrokhotov S. Yu., “Hugoniót–Maslov chains for solitary vortices of the shallow water equations, II”, Russian J. Math. Phys., 6:3 (1999), 282–313 | MR | Zbl

[9] Dobrokhotov S. Yu., “Ob effektakh integriruemosti ukorochennykh tsepochek Gyugonio–Maslova dlya traektorii mezomasshtabnykh vikhrei na melkoi vode”, TMF, 125:3 (2000), 491–518 | MR | Zbl