On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 890-901
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of autonomous and nonautonomous stochastic linear differential equations in $\mathbb R^\infty$ is studied. The existence of strong continuous ($L^p$-continuous) solutions of autonomous linear stochastic differential equations in $\mathbb R^\infty$ with continuous ($L^p$-continuous) right-hand sides is proved. Uniqueness conditions are obtained. We give examples showing that both deterministic and stochastic linear nonautonomous differential equations with the same operator in $\mathbb R^\infty$ may fail to have a solution. We also establish existence and uniqueness conditions for nonautonomous equations.
@article{MZM_2002_71_6_a8,
author = {T. S. Rybnikova},
title = {On {Infinite} {Systems} of {Linear} {Autonomous} and {Nonautonomous} {Stochastic} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {890--901},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/}
}
T. S. Rybnikova. On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 890-901. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/