On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 890-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of autonomous and nonautonomous stochastic linear differential equations in $\mathbb R^\infty$ is studied. The existence of strong continuous ($L^p$-continuous) solutions of autonomous linear stochastic differential equations in $\mathbb R^\infty$ with continuous ($L^p$-continuous) right-hand sides is proved. Uniqueness conditions are obtained. We give examples showing that both deterministic and stochastic linear nonautonomous differential equations with the same operator in $\mathbb R^\infty$ may fail to have a solution. We also establish existence and uniqueness conditions for nonautonomous equations.
@article{MZM_2002_71_6_a8,
     author = {T. S. Rybnikova},
     title = {On {Infinite} {Systems} of {Linear} {Autonomous} and {Nonautonomous} {Stochastic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {890--901},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/}
}
TY  - JOUR
AU  - T. S. Rybnikova
TI  - On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 890
EP  - 901
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/
LA  - ru
ID  - MZM_2002_71_6_a8
ER  - 
%0 Journal Article
%A T. S. Rybnikova
%T On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations
%J Matematičeskie zametki
%D 2002
%P 890-901
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/
%G ru
%F MZM_2002_71_6_a8
T. S. Rybnikova. On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 890-901. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/

[1] Bogachev V. I., “Deterministic and stochastic differential equations in infinite-dimensional spaces”, Acta Appl. Math., 40:1 (1995), 25–93 | DOI | MR | Zbl

[2] Shkarin S. A., “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195

[3] Rybnikova T. S., “O razreshimosti beskonechnykh sistem lineinykh stokhasticheskikh uravnenii”, Teoriya veroyatnostei i primen., 45:3 (2000), 596–602 | MR | Zbl

[4] Herzog G., “On linear time-dependent row-finite systems of differential equations”, Séminaire de mathématique de Luxembourg, Travaux mathématiques Fescicule VIII, 1996, 167–176 | MR | Zbl

[5] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992 | Zbl

[6] Venttsel A. D., Kurs teorii sluchainykh protsessov, Fizmatlit, M., 1996 | Zbl

[7] Sussman H., “An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point”, Bull. Amer. Math. Soc., 83 (1977), 296–298 | DOI | MR | Zbl

[8] Mednitskii Yu. V., “O suschestvovanii silnykh reshenii lineinykh stokhasticheskikh differentsialnykh uravnenii na $\mathbb R^\infty$”, Teoriya veroyatnostei i primen., 42:4 (1997), 826–831 | MR

[9] Lemmert R., Weckbach Ä., “Charakterisierungen zeilenendlicher Matrizen mit abzählbaren Spektrum”, Math. Z., 188:1 (1984), 119–129 | DOI | MR