Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_6_a8, author = {T. S. Rybnikova}, title = {On {Infinite} {Systems} of {Linear} {Autonomous} and {Nonautonomous} {Stochastic} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {890--901}, publisher = {mathdoc}, volume = {71}, number = {6}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/} }
T. S. Rybnikova. On Infinite Systems of Linear Autonomous and Nonautonomous Stochastic Equations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 890-901. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a8/
[1] Bogachev V. I., “Deterministic and stochastic differential equations in infinite-dimensional spaces”, Acta Appl. Math., 40:1 (1995), 25–93 | DOI | MR | Zbl
[2] Shkarin S. A., “Neskolko rezultatov o razreshimosti obyknovennykh lineinykh differentsialnykh uravnenii v lokalno vypuklykh prostranstvakh”, Matem. sb., 181:9 (1990), 1183–1195
[3] Rybnikova T. S., “O razreshimosti beskonechnykh sistem lineinykh stokhasticheskikh uravnenii”, Teoriya veroyatnostei i primen., 45:3 (2000), 596–602 | MR | Zbl
[4] Herzog G., “On linear time-dependent row-finite systems of differential equations”, Séminaire de mathématique de Luxembourg, Travaux mathématiques Fescicule VIII, 1996, 167–176 | MR | Zbl
[5] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992 | Zbl
[6] Venttsel A. D., Kurs teorii sluchainykh protsessov, Fizmatlit, M., 1996 | Zbl
[7] Sussman H., “An interpretation of stochastic differential equations as ordinary differential equations which depend on the sample point”, Bull. Amer. Math. Soc., 83 (1977), 296–298 | DOI | MR | Zbl
[8] Mednitskii Yu. V., “O suschestvovanii silnykh reshenii lineinykh stokhasticheskikh differentsialnykh uravnenii na $\mathbb R^\infty$”, Teoriya veroyatnostei i primen., 42:4 (1997), 826–831 | MR
[9] Lemmert R., Weckbach Ä., “Charakterisierungen zeilenendlicher Matrizen mit abzählbaren Spektrum”, Math. Z., 188:1 (1984), 119–129 | DOI | MR