The ``Duck Survival'' Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 818-831
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the system of ordinary differential equations $\dot x = f(x,y)$, $\varepsilon\dot y=g(x,y)$, where $x\in\mathbb R^2$, $y\in\mathbb R$, $0\varepsilon \ll 1$ and $f,g\in C^\infty$. It is assumed that the equation $g = 0$ determines two different smooth surfaces $y=\varphi(x)$ and $y=\psi(x)$ intersecting generically along a curve $l$. It is further assumed that the trajectories of the corresponding degenerate system lying on the surface $y=\varphi(x)$ are ducks, i.e., as time increases, they intersect the curve $l$ generically and pass from the stable part $\{y=\varphi(x), g'_y0\}$ of this surface to the unstable part $\{y=\varphi(x), g'_y>0\}$. We seek a solution of the so-called duck survival problem, i.e., give an answer to the following question: what trajectories from the one-parameter family of duck trajectories for $\varepsilon=0$ are the limits as $\varepsilon\to 0$ of some trajectories of the original system.
@article{MZM_2002_71_6_a2,
author = {A. S. Bobkova and A. Yu. Kolesov and N. Kh. Rozov},
title = {The {``Duck} {Survival''} {Problem} in {Three-Dimensional} {Singularly} {Perturbed} {Systems} with {Two} {Slow} {Variables}},
journal = {Matemati\v{c}eskie zametki},
pages = {818--831},
publisher = {mathdoc},
volume = {71},
number = {6},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a2/}
}
TY - JOUR AU - A. S. Bobkova AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - The ``Duck Survival'' Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables JO - Matematičeskie zametki PY - 2002 SP - 818 EP - 831 VL - 71 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a2/ LA - ru ID - MZM_2002_71_6_a2 ER -
%0 Journal Article %A A. S. Bobkova %A A. Yu. Kolesov %A N. Kh. Rozov %T The ``Duck Survival'' Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables %J Matematičeskie zametki %D 2002 %P 818-831 %V 71 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a2/ %G ru %F MZM_2002_71_6_a2
A. S. Bobkova; A. Yu. Kolesov; N. Kh. Rozov. The ``Duck Survival'' Problem in Three-Dimensional Singularly Perturbed Systems with Two Slow Variables. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 818-831. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a2/