Dilations, Product Systems, and Weak Dilations
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 914-923.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Bhat's construction of product systems of Hilbert spaces from $E_0$-semigroups on $B(H)$ for some Hilbert space $H$ to the construction of product systems of Hilbert modules from $E_0$-semigroups on $B^a(E)$ for some Hilbert module $E$. As a byproduct we find the representation theory for $B^a(E)$ if $E$ has a unit vector. We establish a necessary and sufficient criterion for the conditional expectation generated by the unit vector to define a weak dilation of a $CP$-semigroup in the sense of [1]. Finally, we also show that white noises on general von Neumann algebras in the sense of [2] can be extended to white noises on a Hilbert module.
@article{MZM_2002_71_6_a10,
     author = {M. Skeide},
     title = {Dilations, {Product} {Systems,} and {Weak} {Dilations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {914--923},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/}
}
TY  - JOUR
AU  - M. Skeide
TI  - Dilations, Product Systems, and Weak Dilations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 914
EP  - 923
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/
LA  - ru
ID  - MZM_2002_71_6_a10
ER  - 
%0 Journal Article
%A M. Skeide
%T Dilations, Product Systems, and Weak Dilations
%J Matematičeskie zametki
%D 2002
%P 914-923
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/
%G ru
%F MZM_2002_71_6_a10
M. Skeide. Dilations, Product Systems, and Weak Dilations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 914-923. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/

[1] Bhat B. V. R., Skeide M., “Tensor product systems of Hilbert modules and dilations of completely positive semigroups”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 3 (2000), 519–575 | MR | Zbl

[2] Kümmerer B., “Markov dilations on $W^*$-algebras”, J. Funct. Anal., 63 (1985), 139–177 | DOI | MR | Zbl

[3] Skeide M., Hilbert Modules and Applications in Quantum Probability, Habilitationsschrift, Cottbus, 2001

[4] Arveson W., Continuous Analogues of Fock Space, Mem. Amer. Math. Soc., 409, Amer. Math. Soc., Providence (R.I.), 1989

[5] Bhat B. V. R., “An index theory for quantum dynamical semigroups”, Trans. Amer. Math. Soc., 348 (1996), 561–583 | DOI | MR | Zbl

[6] Kasparov G. G., “Hilbert $C^*$-modules, theorems of Steinspring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[7] Lance E. C., Hilbert $C^*$-Modules, Cambridge University Press, Cambridge, 1995 | Zbl

[8] Bhat B. V. R., Parthasarathy K. R., “Kolmogorov's existence theorem for Markov processes in $C^*$-algebras”, Proc. Indian Acad. Sci. (Math. Sci.), 104 (1994), 253–262 | DOI | MR | Zbl

[9] Bhat B. V. R., Parthasarathy K. R., “Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory”, Ann. I.H.P. Prob. Stat., 31 (1995), 601–651 | MR | Zbl

[10] Skeide M., “Generalized matrix $C^*$-algebras and representations of Hilbert modules”, Math. Proc. Royal Irish Acad., 100A (2000), 11–38 | MR | Zbl

[11] J. Cuntz, “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[12] Barreto S. D., Bhat B. V. R., Liebscher V., Skeide M., Type I Product Systems of Hilbert Modules, Preprint, BTU Cottbus, Cottbus, 2000

[13] Skeide M., The Index of White Noises and their Product Systems, Preprint, Centro Vito Volterra, Rome, 2001

[14] Goswami D., Sinha K. B., “Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra”, Comm. Math. Phys., 205 (1999), 377–403 | DOI | MR | Zbl

[15] Skeide M., “Quantum stochastic calculus on full Fock modules”, J. Funct. Anal., 173 (2000), 401–452 | DOI | MR | Zbl

[16] Sauvageot J-L., “Markov quantum semigroups admit covariant Markov $C^*$-dilations”, Comm. Math. Phys., 106 (1986), 91–103 | DOI | MR | Zbl

[17] Hellmich J., Quantenstochastische Integration in Hilbertmoduln, Ph. D. thesis, Tübingen, 2001

[18] Hellmich J., Köstler C., Kümmerer B., “Stationary quantum Markov processes as solutions of stochastic differential equations”, Quantum Probability Banach Center Publications, 43, eds. R. Alicki, M. Bozejko, W. A. Majewski, Polish Acad. Sci., Institute Math., Warsaw, 1998, 217–229 | MR | Zbl

[19] Köstler C., Quanten-Markoff-Prozesse und Quanten-Brownsche Bewegungen, Ph. D. thesis, Tübingen, 2000