Dilations, Product Systems, and Weak Dilations
Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 914-923

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Bhat's construction of product systems of Hilbert spaces from $E_0$-semigroups on $B(H)$ for some Hilbert space $H$ to the construction of product systems of Hilbert modules from $E_0$-semigroups on $B^a(E)$ for some Hilbert module $E$. As a byproduct we find the representation theory for $B^a(E)$ if $E$ has a unit vector. We establish a necessary and sufficient criterion for the conditional expectation generated by the unit vector to define a weak dilation of a $CP$-semigroup in the sense of [1]. Finally, we also show that white noises on general von Neumann algebras in the sense of [2] can be extended to white noises on a Hilbert module.
@article{MZM_2002_71_6_a10,
     author = {M. Skeide},
     title = {Dilations, {Product} {Systems,} and {Weak} {Dilations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {914--923},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/}
}
TY  - JOUR
AU  - M. Skeide
TI  - Dilations, Product Systems, and Weak Dilations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 914
EP  - 923
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/
LA  - ru
ID  - MZM_2002_71_6_a10
ER  - 
%0 Journal Article
%A M. Skeide
%T Dilations, Product Systems, and Weak Dilations
%J Matematičeskie zametki
%D 2002
%P 914-923
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/
%G ru
%F MZM_2002_71_6_a10
M. Skeide. Dilations, Product Systems, and Weak Dilations. Matematičeskie zametki, Tome 71 (2002) no. 6, pp. 914-923. http://geodesic.mathdoc.fr/item/MZM_2002_71_6_a10/