Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 742-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1–3] an extension of the solution of the equation $a(x,\dot x)\ddot x=1$, $x\in \mathbb R$, $a(x,\dot x)\in C^1$, to the singular set $S=\{(x,y)\in \mathbb R^2:a(x,y)=0\}$, $y=\dot x$, is defined in terms of the first integral. In this case all stationary points and all local extrema of the integral curve $x(y)$ such that the function $x(y)$ has a derivative at the extreme point belong to a set $S\cup Y$, where $Y$ is the line $y=0$. We study the local stability of local extrema of different types in the families of equations $[a(x,y)+\varepsilon b(x,y)]\dot y=1$, $b(x,y)\in C^1$ for $|\varepsilon |$ small enough. Introduce the notation $S^*=\{(x,y)\in \mathbb R^2:a(x,y)+\varepsilon b(x,y)=0\}$. By abuse of language, we talk about the stability of local extrema when $S$ is replaced with $S^*$. Some sufficient conditions for stability and instability are found.
@article{MZM_2002_71_5_a9,
     author = {I. P. Pavlotsky and M. Strianese},
     title = {Extremal {Points} of {Integral} {Curves} of {Second-Order} {Ordinary} {Differential} {Equations} and {Their} {Local} {Stability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {742--750},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/}
}
TY  - JOUR
AU  - I. P. Pavlotsky
AU  - M. Strianese
TI  - Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
JO  - Matematičeskie zametki
PY  - 2002
SP  - 742
EP  - 750
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/
LA  - ru
ID  - MZM_2002_71_5_a9
ER  - 
%0 Journal Article
%A I. P. Pavlotsky
%A M. Strianese
%T Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
%J Matematičeskie zametki
%D 2002
%P 742-750
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/
%G ru
%F MZM_2002_71_5_a9
I. P. Pavlotsky; M. Strianese. Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 742-750. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/

[1] Pavlotskii I. P., Strianeze M., Toskano R., “Prodolzhenie resheniya differentsialnogo uravneniya na singulyarnoe mnozhestvo”, Differents. uravneniya, 34:3 (1998), 313–319 | MR

[2] Pavlotsky I. P., Strianese M., Toscano R., “Prolongation of the integral curve on the singular set via the first integral”, J. Interdisciplinary Math., 2:2–3 (1999), 101–119 | MR | Zbl

[3] Pavlotsky I. P., Strianese M., “Extension of solution of ODE via the singular set”, Nonlinear Anal., 47 (2001), 4313–4317 | DOI | MR | Zbl

[4] Laserra E., Pavlotsky I. P., Strianese M., “Radius of electron as a consequence of Poincaré group”, Phys. A, 219 (1995), 141–158 | DOI

[5] Pavlotsky I. P., Strianese M., “Some peculiar properties of Darwin's Lagrangian”, Int. J. Mod. Phys. B, 9:23 (1995), 3069–3083 | DOI

[6] Pavlotsky I. P., Strianese M., “Irreversibility in classical mechanics as a consequence of Poincaré groupe”, Int. J. Mod. Phys. B, 10:21 (1996), 2675–2685 | DOI | MR

[7] Pavlotsky I. P., Strianese M., “Minimal distance between the interacting points as a consequence of the singular set of Euler–Lagrange equations”, J. Interdisciplinary Math., 2002 (to appear) | MR | Zbl

[8] Batutin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990

[9] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva dinamicheskoi sistemy”, Differents. uravneniya, 35:3 (1999), 296–303 | MR

[10] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva obyknovennykh differentsialnykh uravnenii vtorogo poryadka otnositelno $\varepsilon x$- i $\varepsilon y$-vozmuschenii”, Dokl. NAN Ukrainy, 2002 (to appear)

[11] Pavlotsky I. P., Strianese M., On the Stability of the Singular Set of the Ordinary Differential Equations of the Second Order with respect to Some Types of Perturbations, Preprint of D.M.I. of University of Salerno (Italia), No 2, 2000

[12] Kaplun Yu. I., Samolenko V. Hr., Pavlotsky I. P., Strianese M., “The global theorem on implicit function and its application in the theory of ordinary differential equations”, Dokl. NAN Ukrainy, 2001, no. 6, 38–41 | MR | Zbl