Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 742-750

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1–3] an extension of the solution of the equation $a(x,\dot x)\ddot x=1$, $x\in \mathbb R$, $a(x,\dot x)\in C^1$, to the singular set $S=\{(x,y)\in \mathbb R^2:a(x,y)=0\}$, $y=\dot x$, is defined in terms of the first integral. In this case all stationary points and all local extrema of the integral curve $x(y)$ such that the function $x(y)$ has a derivative at the extreme point belong to a set $S\cup Y$, where $Y$ is the line $y=0$. We study the local stability of local extrema of different types in the families of equations $[a(x,y)+\varepsilon b(x,y)]\dot y=1$, $b(x,y)\in C^1$ for $|\varepsilon |$ small enough. Introduce the notation $S^*=\{(x,y)\in \mathbb R^2:a(x,y)+\varepsilon b(x,y)=0\}$. By abuse of language, we talk about the stability of local extrema when $S$ is replaced with $S^*$. Some sufficient conditions for stability and instability are found.
@article{MZM_2002_71_5_a9,
     author = {I. P. Pavlotsky and M. Strianese},
     title = {Extremal {Points} of {Integral} {Curves} of {Second-Order} {Ordinary} {Differential} {Equations} and {Their} {Local} {Stability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {742--750},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/}
}
TY  - JOUR
AU  - I. P. Pavlotsky
AU  - M. Strianese
TI  - Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
JO  - Matematičeskie zametki
PY  - 2002
SP  - 742
EP  - 750
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/
LA  - ru
ID  - MZM_2002_71_5_a9
ER  - 
%0 Journal Article
%A I. P. Pavlotsky
%A M. Strianese
%T Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
%J Matematičeskie zametki
%D 2002
%P 742-750
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/
%G ru
%F MZM_2002_71_5_a9
I. P. Pavlotsky; M. Strianese. Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 742-750. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/