Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_5_a9, author = {I. P. Pavlotsky and M. Strianese}, title = {Extremal {Points} of {Integral} {Curves} of {Second-Order} {Ordinary} {Differential} {Equations} and {Their} {Local} {Stability}}, journal = {Matemati\v{c}eskie zametki}, pages = {742--750}, publisher = {mathdoc}, volume = {71}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/} }
TY - JOUR AU - I. P. Pavlotsky AU - M. Strianese TI - Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability JO - Matematičeskie zametki PY - 2002 SP - 742 EP - 750 VL - 71 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/ LA - ru ID - MZM_2002_71_5_a9 ER -
%0 Journal Article %A I. P. Pavlotsky %A M. Strianese %T Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability %J Matematičeskie zametki %D 2002 %P 742-750 %V 71 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/ %G ru %F MZM_2002_71_5_a9
I. P. Pavlotsky; M. Strianese. Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 742-750. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a9/
[1] Pavlotskii I. P., Strianeze M., Toskano R., “Prodolzhenie resheniya differentsialnogo uravneniya na singulyarnoe mnozhestvo”, Differents. uravneniya, 34:3 (1998), 313–319 | MR
[2] Pavlotsky I. P., Strianese M., Toscano R., “Prolongation of the integral curve on the singular set via the first integral”, J. Interdisciplinary Math., 2:2–3 (1999), 101–119 | MR | Zbl
[3] Pavlotsky I. P., Strianese M., “Extension of solution of ODE via the singular set”, Nonlinear Anal., 47 (2001), 4313–4317 | DOI | MR | Zbl
[4] Laserra E., Pavlotsky I. P., Strianese M., “Radius of electron as a consequence of Poincaré group”, Phys. A, 219 (1995), 141–158 | DOI
[5] Pavlotsky I. P., Strianese M., “Some peculiar properties of Darwin's Lagrangian”, Int. J. Mod. Phys. B, 9:23 (1995), 3069–3083 | DOI
[6] Pavlotsky I. P., Strianese M., “Irreversibility in classical mechanics as a consequence of Poincaré groupe”, Int. J. Mod. Phys. B, 10:21 (1996), 2675–2685 | DOI | MR
[7] Pavlotsky I. P., Strianese M., “Minimal distance between the interacting points as a consequence of the singular set of Euler–Lagrange equations”, J. Interdisciplinary Math., 2002 (to appear) | MR | Zbl
[8] Batutin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990
[9] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva dinamicheskoi sistemy”, Differents. uravneniya, 35:3 (1999), 296–303 | MR
[10] Pavlotskii I. P., Strianeze M., “Ustoichivost singulyarnogo mnozhestva obyknovennykh differentsialnykh uravnenii vtorogo poryadka otnositelno $\varepsilon x$- i $\varepsilon y$-vozmuschenii”, Dokl. NAN Ukrainy, 2002 (to appear)
[11] Pavlotsky I. P., Strianese M., On the Stability of the Singular Set of the Ordinary Differential Equations of the Second Order with respect to Some Types of Perturbations, Preprint of D.M.I. of University of Salerno (Italia), No 2, 2000
[12] Kaplun Yu. I., Samolenko V. Hr., Pavlotsky I. P., Strianese M., “The global theorem on implicit function and its application in the theory of ordinary differential equations”, Dokl. NAN Ukrainy, 2001, no. 6, 38–41 | MR | Zbl