Integrality of Power Expansions Related to Hypergeometric Series
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 662-676

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the arithmetic properties of power expansions related to generalized hypergeometric differential equations and series. Defining the series $f(z),g(z)$ in powers of $z$ so that $f(z)$ and $f(z)\log z+g(z)$ satisfy a hypergeometric equation under a special choice of parameters, we prove that the series $q(z)=ze^{g(Cz)/f(Cz)}$ in powers of $z$ and its inversion $z(q)$ in powers of $q$ have integer coefficients (here the constant $C$ depends on the parameters of the hypergeometric equation). The existence of an integral expansion $z(q)$ for differential equations of second and third order is a classical result; for orders higher than 3 some partial results were recently established by Lian and Yau. In our proof we generalize the scheme of their arguments by using Dwork's $p$-adic technique.
@article{MZM_2002_71_5_a2,
     author = {W. V. Zudilin},
     title = {Integrality of {Power} {Expansions} {Related} to {Hypergeometric} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {662--676},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - Integrality of Power Expansions Related to Hypergeometric Series
JO  - Matematičeskie zametki
PY  - 2002
SP  - 662
EP  - 676
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/
LA  - ru
ID  - MZM_2002_71_5_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T Integrality of Power Expansions Related to Hypergeometric Series
%J Matematičeskie zametki
%D 2002
%P 662-676
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/
%G ru
%F MZM_2002_71_5_a2
W. V. Zudilin. Integrality of Power Expansions Related to Hypergeometric Series. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 662-676. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/