Integrality of Power Expansions Related to Hypergeometric Series
Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 662-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the arithmetic properties of power expansions related to generalized hypergeometric differential equations and series. Defining the series $f(z),g(z)$ in powers of $z$ so that $f(z)$ and $f(z)\log z+g(z)$ satisfy a hypergeometric equation under a special choice of parameters, we prove that the series $q(z)=ze^{g(Cz)/f(Cz)}$ in powers of $z$ and its inversion $z(q)$ in powers of $q$ have integer coefficients (here the constant $C$ depends on the parameters of the hypergeometric equation). The existence of an integral expansion $z(q)$ for differential equations of second and third order is a classical result; for orders higher than 3 some partial results were recently established by Lian and Yau. In our proof we generalize the scheme of their arguments by using Dwork's $p$-adic technique.
@article{MZM_2002_71_5_a2,
     author = {W. V. Zudilin},
     title = {Integrality of {Power} {Expansions} {Related} to {Hypergeometric} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {662--676},
     publisher = {mathdoc},
     volume = {71},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - Integrality of Power Expansions Related to Hypergeometric Series
JO  - Matematičeskie zametki
PY  - 2002
SP  - 662
EP  - 676
VL  - 71
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/
LA  - ru
ID  - MZM_2002_71_5_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T Integrality of Power Expansions Related to Hypergeometric Series
%J Matematičeskie zametki
%D 2002
%P 662-676
%V 71
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/
%G ru
%F MZM_2002_71_5_a2
W. V. Zudilin. Integrality of Power Expansions Related to Hypergeometric Series. Matematičeskie zametki, Tome 71 (2002) no. 5, pp. 662-676. http://geodesic.mathdoc.fr/item/MZM_2002_71_5_a2/

[1] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. II. 3-e izd., Nauka, M., 1978

[2] Morrison D. R., “Picard–Fuchs equations and mirror maps for hypersurfaces”, Essays on Mirror Manifolds, ed. S.-T. Yau, International Press, Hong Kong, 1992, 241–264 ; Mirror Symmetry, I, AMS/IP Stud. Adv. Math, 9, ed. S.-T. Yau, Amer. Math. Soc., Providence, R.I., 1998, 185–199 | MR | Zbl | Zbl

[3] Batyrev V. V., van Straten D., “Generalized hypergeometric functions and rational curves on Calabi–Yau complete intersections in toric varieties”, Comm. Math. Phys., 168:3 (1995), 493–533 | DOI | MR | Zbl

[4] Lian B. H., Yau S.-T., Mirror maps, modular relations and hypergeometric series, I, ; “Integrality of certain exponential series”, Lectures in Algebra and Geometry, Proceedings of the International Conference on Algebra and Geometry, National Taiwan University (Taipei, Taiwan, December 26–30, 1995), ed. M.-C. Kang, International Press, Cambridge, MA, 1998, 215–227 arXiv: hep-th/9507151 | MR | Zbl

[5] Dwork B., “On $p$-adic differential equations. IV: Generalized hypergeometric functions as $p$-adic analytic functions in one variable”, Ann. Sci. École Norm. Sup. (4), 6:3 (1973), 295–315 | MR | Zbl

[6] Katz N. M., “Algebraic solutions of differential equations ($p$-curvature and the Hodge fibration)”, Invent. Math., 18:1/2 (1972), 1–118 | DOI | MR | Zbl

[7] Morrison D. R., “Mathematical aspects of mirror symmetry”, Complex Algebraic Geometry, Lectures of a Summer Program (Park City, UT, 1993), IAS/Park City Math. Ser., 3, ed. J. Kollár, Amer. Math. Soc., Providence, RI, 1997, 267–340 | MR | Zbl

[8] Zudilin W., Number theory casting a look at the mirror, arXiv: math/0008237

[9] Koblits N., $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1982

[10] André Y., $G$-Functions and Geometry, A Publication of the Max-Planck-Institut für Mathematik, Bonn, Aspects Math., E13, Vieweg, Braunschweig, 1989

[11] Lang S., Cyclotomic Fields, I, II. Combined 2nd edition, Graduate Texts in Math., 121, Springer-Verlag, New York, 1990 | Zbl