The Set of Pre-Ends and the Ideal Boundary of a Manifold without Boundary
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 554-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations between prime pre-ends and elements of the ideal boundary of a manifold without boundary are studied. The cases of a manifold with Mazurkiewicz or Riemannian intrinsic metric and of a manifold with quasihyperbolic metric are considered.
@article{MZM_2002_71_4_a6,
     author = {A. P. Karmazin},
     title = {The {Set} of {Pre-Ends} and the {Ideal} {Boundary} of a {Manifold} without {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {554--557},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a6/}
}
TY  - JOUR
AU  - A. P. Karmazin
TI  - The Set of Pre-Ends and the Ideal Boundary of a Manifold without Boundary
JO  - Matematičeskie zametki
PY  - 2002
SP  - 554
EP  - 557
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a6/
LA  - ru
ID  - MZM_2002_71_4_a6
ER  - 
%0 Journal Article
%A A. P. Karmazin
%T The Set of Pre-Ends and the Ideal Boundary of a Manifold without Boundary
%J Matematičeskie zametki
%D 2002
%P 554-557
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a6/
%G ru
%F MZM_2002_71_4_a6
A. P. Karmazin. The Set of Pre-Ends and the Ideal Boundary of a Manifold without Boundary. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 554-557. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a6/

[1] Karmazin A. P., Prostye predkontsy prostranstvennykh oblastei, Tomskii un-t. Dep. VINITI No. 2220-V92, VINITI, M., 1992

[2] Karmazin A. P., Metricheskie struktury prostranstvennykh oblastei i granichnoe povedenie kvaziizometrii, Red. Sib. matem. zh. Dep. VINITI No. 3244-V99, VINITI, M., 1999

[3] Karmazin A. P., Matem. trudy, 1, no. 2, Izd-vo IM RAN, Novosibirsk, 1998, 79–110 | MR

[4] Gromov M., Asymptotic Invariants of Infinite Groups, Geometric Group Theory, V. 2, Cambridge Univ. Press, Cambridge, 1993

[5] Buyalo S. V., “Geodezicheskie v prostranstvakh Adamara”, Algebra i analiz, 10:2 (1998), 93–123 | MR | Zbl

[6] Suvorov G. D., Metricheskaya teoriya prostykh kontsov i granichnye svoistva ploskikh otobrazhenii s ogranichennymi integralami Dirikhle, Naukova dumka, Kiev, 1981