On Milnor's Invariants of 4-Component Links
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of Milnor's $\mu$-invariants of three- and four-component links with respect to the discriminant determined by $\Delta$-moves of links. We introduce a new type of $\Delta$-move, balanced $\Delta$-moves, or, briefly, $B\Delta$-moves. Since each four-component link is equivalent to a standard link under a sequence of balanced $\Delta$-moves, $\Delta$-moves that involve at most two components, and Reidemeister moves, we manage to define axiomatically $\mu$-invariants of length 3 for arbitrary semibounding links.
@article{MZM_2002_71_4_a1,
author = {P. M. Akhmet'ev and D. Repov\v{s} and I. Maleshich},
title = {On {Milnor's} {Invariants} of {4-Component} {Links}},
journal = {Matemati\v{c}eskie zametki},
pages = {496--507},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/}
}
P. M. Akhmet'ev; D. Repovš; I. Maleshich. On Milnor's Invariants of 4-Component Links. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/