On Milnor's Invariants of 4-Component Links
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of Milnor's $\mu$-invariants of three- and four-component links with respect to the discriminant determined by $\Delta$-moves of links. We introduce a new type of $\Delta$-move, balanced $\Delta$-moves, or, briefly, $B\Delta$-moves. Since each four-component link is equivalent to a standard link under a sequence of balanced $\Delta$-moves, $\Delta$-moves that involve at most two components, and Reidemeister moves, we manage to define axiomatically $\mu$-invariants of length 3 for arbitrary semibounding links.
@article{MZM_2002_71_4_a1,
     author = {P. M. Akhmet'ev and D. Repov\v{s} and I. Maleshich},
     title = {On {Milnor's} {Invariants} of {4-Component} {Links}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {496--507},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - D. Repovš
AU  - I. Maleshich
TI  - On Milnor's Invariants of 4-Component Links
JO  - Matematičeskie zametki
PY  - 2002
SP  - 496
EP  - 507
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/
LA  - ru
ID  - MZM_2002_71_4_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A D. Repovš
%A I. Maleshich
%T On Milnor's Invariants of 4-Component Links
%J Matematičeskie zametki
%D 2002
%P 496-507
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/
%G ru
%F MZM_2002_71_4_a1
P. M. Akhmet'ev; D. Repovš; I. Maleshich. On Milnor's Invariants of 4-Component Links. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/

[1] Milnor J. W., “Link groups”, Ann. of Math., 59:2 (1954), 177–195 | DOI | MR | Zbl

[2] Porter R., “Milnor $\mu $-invariants and Massey products”, Trans. Amer. Math. Soc., 257 (1980), 39–71 | DOI | MR | Zbl

[3] Turaev V. G., “Invarianty Milnora i proizvedeniya Massi”, Zapiski nauch. sem. LOMI, 66, Nauka, L., 1976, 189–203 | MR | Zbl

[4] Cochran T. D., “Derivatives of links: Milnor's concordance invariants and Massey's products”, Mem. Amer. Math. Soc., 84, no. 427, 1990, 1–73 | MR

[5] Mellor B., Finite Type Homotopy Invariants, I, , 1999 E-print math.GT/9807162u4

[6] Kirk P., Livingston C., “Vassiliev invariants of two components links and the Casson–Walker invariant”, Topology, 36 (1997), 1333–1353 | DOI | MR | Zbl

[7] Akhmetev P. M., Repovsh D., “Obobschenie invarianta Sato–Levina”, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl

[8] Cochran T. D., “Concordance invariance of the coefficients of Conway's link polynomial”, Invent. Math., 82 (1985), 527–541 | DOI | MR | Zbl

[9] Akhmet'ev P. M., Ruzmaikin A., “Borromeanism and Bordism”, Topological Aspects of the Dynamics of Fluids and Plasma, eds. H. K. Moffatt et al., Kluwer, Dordrecht, 1992, 249–260 | MR

[10] Murakami H., Nakanishi Y., “On a certain move generating link-homology”, Math. Ann., 284 (1989), 75–89 | DOI | MR | Zbl

[11] Mellor B., Finite Type Homotopy Invariants. II: Milnor's $\overline mu$-Invariants, , 1998 E-print math.GT/9812119

[12] Stanford T., Braid Commutators and $\Delta $ Finite-type Invariants, , 1999 E-print math.GT/9907071

[13] Habiro K., “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 | DOI | MR | Zbl

[14] Levine J. P., “An approach to homotopy classification of links”, Trans. Amer. Math. Soc., 306 (1988) | DOI

[15] Akhmetev P. M., Maleshich I., Repovsh D., “Formula dlya obobschennogo invarianta Sato–Levina”, Matem. sb. (to appear)