Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_4_a1, author = {P. M. Akhmet'ev and D. Repov\v{s} and I. Maleshich}, title = {On {Milnor's} {Invariants} of {4-Component} {Links}}, journal = {Matemati\v{c}eskie zametki}, pages = {496--507}, publisher = {mathdoc}, volume = {71}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/} }
P. M. Akhmet'ev; D. Repovš; I. Maleshich. On Milnor's Invariants of 4-Component Links. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/
[1] Milnor J. W., “Link groups”, Ann. of Math., 59:2 (1954), 177–195 | DOI | MR | Zbl
[2] Porter R., “Milnor $\mu $-invariants and Massey products”, Trans. Amer. Math. Soc., 257 (1980), 39–71 | DOI | MR | Zbl
[3] Turaev V. G., “Invarianty Milnora i proizvedeniya Massi”, Zapiski nauch. sem. LOMI, 66, Nauka, L., 1976, 189–203 | MR | Zbl
[4] Cochran T. D., “Derivatives of links: Milnor's concordance invariants and Massey's products”, Mem. Amer. Math. Soc., 84, no. 427, 1990, 1–73 | MR
[5] Mellor B., Finite Type Homotopy Invariants, I, , 1999 E-print math.GT/9807162u4
[6] Kirk P., Livingston C., “Vassiliev invariants of two components links and the Casson–Walker invariant”, Topology, 36 (1997), 1333–1353 | DOI | MR | Zbl
[7] Akhmetev P. M., Repovsh D., “Obobschenie invarianta Sato–Levina”, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl
[8] Cochran T. D., “Concordance invariance of the coefficients of Conway's link polynomial”, Invent. Math., 82 (1985), 527–541 | DOI | MR | Zbl
[9] Akhmet'ev P. M., Ruzmaikin A., “Borromeanism and Bordism”, Topological Aspects of the Dynamics of Fluids and Plasma, eds. H. K. Moffatt et al., Kluwer, Dordrecht, 1992, 249–260 | MR
[10] Murakami H., Nakanishi Y., “On a certain move generating link-homology”, Math. Ann., 284 (1989), 75–89 | DOI | MR | Zbl
[11] Mellor B., Finite Type Homotopy Invariants. II: Milnor's $\overline mu$-Invariants, , 1998 E-print math.GT/9812119
[12] Stanford T., Braid Commutators and $\Delta $ Finite-type Invariants, , 1999 E-print math.GT/9907071
[13] Habiro K., “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 | DOI | MR | Zbl
[14] Levine J. P., “An approach to homotopy classification of links”, Trans. Amer. Math. Soc., 306 (1988) | DOI
[15] Akhmetev P. M., Maleshich I., Repovsh D., “Formula dlya obobschennogo invarianta Sato–Levina”, Matem. sb. (to appear)