On Milnor's Invariants of 4-Component Links
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of Milnor's $\mu$-invariants of three- and four-component links with respect to the discriminant determined by $\Delta$-moves of links. We introduce a new type of $\Delta$-move, balanced $\Delta$-moves, or, briefly, $B\Delta$-moves. Since each four-component link is equivalent to a standard link under a sequence of balanced $\Delta$-moves, $\Delta$-moves that involve at most two components, and Reidemeister moves, we manage to define axiomatically $\mu$-invariants of length 3 for arbitrary semibounding links.
@article{MZM_2002_71_4_a1,
     author = {P. M. Akhmet'ev and D. Repov\v{s} and I. Maleshich},
     title = {On {Milnor's} {Invariants} of {4-Component} {Links}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {496--507},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - D. Repovš
AU  - I. Maleshich
TI  - On Milnor's Invariants of 4-Component Links
JO  - Matematičeskie zametki
PY  - 2002
SP  - 496
EP  - 507
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/
LA  - ru
ID  - MZM_2002_71_4_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A D. Repovš
%A I. Maleshich
%T On Milnor's Invariants of 4-Component Links
%J Matematičeskie zametki
%D 2002
%P 496-507
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/
%G ru
%F MZM_2002_71_4_a1
P. M. Akhmet'ev; D. Repovš; I. Maleshich. On Milnor's Invariants of 4-Component Links. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 496-507. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a1/