Blow-Ups of Three-Dimensional Terminal Singularities: The $cA$ Case
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 440-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

Divisors with minimal discrepancy over $cA$ points are classified.
@article{MZM_2002_71_3_a9,
     author = {I. Yu. Fedorov},
     title = {Blow-Ups of {Three-Dimensional} {Terminal} {Singularities:} {The} $cA$ {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--447},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a9/}
}
TY  - JOUR
AU  - I. Yu. Fedorov
TI  - Blow-Ups of Three-Dimensional Terminal Singularities: The $cA$ Case
JO  - Matematičeskie zametki
PY  - 2002
SP  - 440
EP  - 447
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a9/
LA  - ru
ID  - MZM_2002_71_3_a9
ER  - 
%0 Journal Article
%A I. Yu. Fedorov
%T Blow-Ups of Three-Dimensional Terminal Singularities: The $cA$ Case
%J Matematičeskie zametki
%D 2002
%P 440-447
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a9/
%G ru
%F MZM_2002_71_3_a9
I. Yu. Fedorov. Blow-Ups of Three-Dimensional Terminal Singularities: The $cA$ Case. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 440-447. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a9/

[1] Reid M., “Young person's guide to canonical singularities”, Proc. Symp. Pure Math., 46, 1987, 343–416

[2] Danilov V. I., “Biratsionalnaya geometriya toricheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 971–982 | MR

[3] Reid M., “Minimal models of canonical threefolds”, Adv. Stud. Pure Math., 1, 1983, 131–180 | Zbl

[4] Morrison D., Stevens G., “Terminal quotient singularities in dimension three and four”, Proc. Amer. Math. Soc., 90 (1984), 15–20 | DOI | MR | Zbl

[5] Mori S., “On $3$-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[6] Kawamata Y., “Divisorial contractions to 3-dimensional terminal quotient singularities”, Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, 1996, 241–246 | MR | Zbl

[7] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl

[8] Cutkosky S., “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl

[9] Luo T., “Divisorial contractions of threefolds: divisor to point”, Amer. J. Math., 120 (1998), 441–451 | DOI | MR | Zbl

[10] Kawakita M., Divisorial contractions in dimension three which contract divisor to smooth points, , 2000 E-print math.AG/0005207

[11] Kawakita M., Divisorial contractions in dimension three which contract divisors to compound $A_1$ points, , 2000 E-print math.AG/0010207

[12] Kawamata Y., “The minimal discrepancy of $3$-fold terminal singularity. Appendix to Shokurov V. V. $3$-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 93–202 | MR

[13] Markushevich D., “Minimal discrepancy for a terminal cDv singularity is $1$”, J. Math. Sci. Univ. Tokyo, 3 (1996), 445–456 | MR | Zbl

[14] Hayakawa T., “Blowing-ups of $3$-dimensional terminal singularities”, RIMS Kyoto Univ., 35 (1999), 515–570 | DOI | MR | Zbl

[15] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982

[16] Markushevich D. G., “Kanonicheskie osobennosti trekhmernykh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 334–368 | MR | Zbl