Affine Types of $L$-Polyhedra for 5-lattices
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 412-430
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an algorithm for deducing all affinely nonequivalent types of $L$-polyhedra on $n$-lattices, where $n\le 5$. The computational part of the algorithm designed for calculations on a personal computer is based on the relationship between the geometry of lattices and the theory of hypermetric spaces. For the first time, a complete list of affine types (139 types) of $L$-polyhedra on 5-lattices is obtained.
@article{MZM_2002_71_3_a7,
author = {P. G. Kononenko},
title = {Affine {Types} of $L${-Polyhedra} for 5-lattices},
journal = {Matemati\v{c}eskie zametki},
pages = {412--430},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a7/}
}
P. G. Kononenko. Affine Types of $L$-Polyhedra for 5-lattices. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 412-430. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a7/