Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_3_a4, author = {K. A. Volosov}, title = {A {Property} of the {Ansatz} of {Hirota's} {Method} for {Quasilinear} {Parabolic} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {373--389}, publisher = {mathdoc}, volume = {71}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/} }
K. A. Volosov. A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 373-389. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/
[1] Volosov K. A., “Invariant properties of the ansatz of the Hirota method for quasilinear parabolic equations”, International conference “Differential Equations and Related Topics”, XX Joint Session of Petrovskii Seminar and Moscow Mathematical Society, M., 2001, 433
[2] Volosov K. A., “Tools for mathematical modeling”, The Third International Conference, Saint-Petersburg, 2001
[3] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Acad. Publ., Dordrecht–Boston–London, 1995 | Zbl
[4] Danilov V. G., Subochev P. Yu., “Kinkovye resheniya v uravnenii KPP–Fishera”, Matem. zametki, 50:3 (1991), 152–154 | MR | Zbl
[5] Hirota R., “Exact solution of the Korteweg–de Vries equations for the multiple collisions of solitons”, J. Phys. Soc. Japan., 33 (1972), 1459 | DOI
[6] Solitony, ed. Novikov S. P., Mir, M., 1983
[7] Volny v aktivnykh i nelineinykh sredakh v prilozhenii k elektronike, ed. Novikov S. P., Mir, M., 1977
[8] Goldstone J., Jaskiw R., “Quantization of nonlinear waves”, Phys. Rev. D, 11 (1975), 1486 | DOI
[9] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. I; II; III”, Phys. Rev. D, 10 (1974), 4114–4129 ; 4130–4137; 4138–4142 | DOI
[10] Ablowitz M. J., Zeppeteller P., “Explicit solutions of Fisher's equations for a special wave speed”, Zeppeteller Bul. Math. Biol., 41 (1979), 835–840 | MR | Zbl
[11] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Obosnovanie asimptoticheskogo resheniya dlya sistemy fazovogo polya i modifitsirovannaya zadacha Stefana”, Matem. sb., 186:12 (1996), 63–80 | MR
[12] Ablowitz M. J., Segur H., Solution for Inverse Scattering Transform, SIAM, Philadelphia, 1981 | Zbl
[13] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplomassoperenosa (evolyutsiya dissipativnykh struktur), S dobavleniem N. A. Kolobova, Nauka, M., 1987
[14] Volosov K. A., Danilov V. G., Loginov A. M., “Tochnye avtomodelnye i dvukhfaznye resheniya sistem polulineinykh parabolicheskikh uravnenii”, TMF, 101:2 (1994), 189–199 | MR | Zbl
[15] Fisher R. A., “The wave of advance of advantageous Genes”, Ann. of Eugenics, 7 (1937), 355–369
[16] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Asimptotika resheniya sistemy fazovogo polya i modifitsirovannaya zadacha Stefana”, Differents. uravneniya, 31:3 (1995), 483–491 | MR | Zbl
[17] Danilov V. G., Omelyanov G. A., Radkevich E. V., “O regulyarizatsii dannykh modifitsirovannoi zadachi Stefana”, Matem. zametki, 57:5 (1995), 793–795 | MR | Zbl
[18] Maslov V. P., Omelyanov G. A., “Asimptoticheskie solitonoobraznye resheniya uravnenii s maloi dispersiei”, UMN, 36:3 (1981), 63–126 | MR | Zbl
[19] Maslov V. P., Omelyanov G. A., “Ob usloviyakh tipa Gyugonio dlya beskonechno uzkikh reshenii uravneniya prostykh voln”, Sib. matem. zh., 24:5 (1983), 172–181 | MR
[20] Volosov K. A., Danilov V. G., Kolobov N. A., Maslov V. P., “Lokalizovannye uedinennye volny”, Dokl. AN SSSR, 287:6 (1986), 535–538 | MR
[21] Zaitsev V. F., Polyanin A. D., Spravochnik. Obyknovennye differentsialnye uravneniya, Fizmatlit, M., 2001 | Zbl
[22] Belotelov N. V., Lobanov A. I., “Populyatsionnye modeli nelineinoi diffuzii”, Matem. model., 9:12 (1997), 43–56 | MR | Zbl
[23] Lobanov A. I., Starozhilova T. K., “Kachestvennoe issledovanie nachalnogo etapa formirovaniya neravnovesnykh struktur v modeli tipa “reaktsiya-diffuziya””, Matem. model., 9:12 (1997), 3–15 | MR | Zbl
[24] Melnikova E. V., “Nelineinaya dinamika rasprostraneniya epidemii”, Izv. vuzov. Prikl. nelin. dinam., 6:2 (1998), 110–116 | MR
[25] Kozhonov A. I., “Kraevaya zadacha dlya odnogo klassa parabolicheskikh uravnenii, voznikayuschaya pri opisanii protsessa opresneniya”, Sb. nauch. trudov, 36, Sib. otd. AN SSSR. In-t gidrodinamiki, 1978, 38–46
[26] Volosov K. A., “Invariantnye svoistva anzatsa metoda R. Hirota”, Novye informatsionnye tekhnologii, Materialy chetvertogo seminara, MGIEM(TU), M., 2001
[27] Pukhnachev V. V., “Preobrazovaniya ekvivalentnosti i skrytaya simmetriya evolyutsionnykh uravnenii”, Dokl. AN SSSR, 294:3 (1987), 535–538 | MR | Zbl
[28] Galaktionov V. A., Posashkov S. A., “Tochnye resheniya i invariantnye prostranstva dlya nelineinykh uravnenii gradientnoi diffuzii”, ZhVMiMF, 34:3 (1994), 373–383 | MR
[29] Gilding B. H., Kersner R., “The characterization of reaction-convection-diffusion processes by travelling waves”, J. Differential Equations, 124:1 (1996), 27–29 | DOI | MR