A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 373-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using the recently discovered new invariant properties of the ansatz of R. Hirota's method, we prove that the classes of linear fractional solutions to some nonlinear equations are closed. This allows us to construct new solutions for a chosen class of dissipative equations. This algorithm is similar to the method of dressing the solutions of integrable equations. The equations thus obtained imply a compatibility condition and are known as a nonlinear Lax pair with variable coefficients. So we propose a method for constructing such pairs. To construct solutions of a more complicated form, we propose to use the property of zero denominators and factorized brackets, which has been discovered experimentally. The expressions thus constructed are said to be quasi-invariant. They allow us to find true relations between the functions contained in the ansatz, to correct the ansatz, and to construct a solution. We present some examples of new solutions constructed following this approach. Such solutions can be used for majorizing in comparison theorems and for modeling phase processes and process in neurocomputers. A program for computing solutions by methods of computer algebra is written. These techniques supplement the classical methods for constructing solutions by using their group properties.
@article{MZM_2002_71_3_a4,
     author = {K. A. Volosov},
     title = {A {Property} of the {Ansatz} of {Hirota's} {Method} for {Quasilinear} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--389},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/}
}
TY  - JOUR
AU  - K. A. Volosov
TI  - A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 373
EP  - 389
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/
LA  - ru
ID  - MZM_2002_71_3_a4
ER  - 
%0 Journal Article
%A K. A. Volosov
%T A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations
%J Matematičeskie zametki
%D 2002
%P 373-389
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/
%G ru
%F MZM_2002_71_3_a4
K. A. Volosov. A Property of the Ansatz of Hirota's Method for Quasilinear Parabolic Equations. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 373-389. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a4/

[1] Volosov K. A., “Invariant properties of the ansatz of the Hirota method for quasilinear parabolic equations”, International conference “Differential Equations and Related Topics”, XX Joint Session of Petrovskii Seminar and Moscow Mathematical Society, M., 2001, 433

[2] Volosov K. A., “Tools for mathematical modeling”, The Third International Conference, Saint-Petersburg, 2001

[3] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer Acad. Publ., Dordrecht–Boston–London, 1995 | Zbl

[4] Danilov V. G., Subochev P. Yu., “Kinkovye resheniya v uravnenii KPP–Fishera”, Matem. zametki, 50:3 (1991), 152–154 | MR | Zbl

[5] Hirota R., “Exact solution of the Korteweg–de Vries equations for the multiple collisions of solitons”, J. Phys. Soc. Japan., 33 (1972), 1459 | DOI

[6] Solitony, ed. Novikov S. P., Mir, M., 1983

[7] Volny v aktivnykh i nelineinykh sredakh v prilozhenii k elektronike, ed. Novikov S. P., Mir, M., 1977

[8] Goldstone J., Jaskiw R., “Quantization of nonlinear waves”, Phys. Rev. D, 11 (1975), 1486 | DOI

[9] Dashen R. F., Hasslacher B., Neveu A., “Nonperturbative methods and extended-hadron models in field theory. I; II; III”, Phys. Rev. D, 10 (1974), 4114–4129 ; 4130–4137; 4138–4142 | DOI

[10] Ablowitz M. J., Zeppeteller P., “Explicit solutions of Fisher's equations for a special wave speed”, Zeppeteller Bul. Math. Biol., 41 (1979), 835–840 | MR | Zbl

[11] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Obosnovanie asimptoticheskogo resheniya dlya sistemy fazovogo polya i modifitsirovannaya zadacha Stefana”, Matem. sb., 186:12 (1996), 63–80 | MR

[12] Ablowitz M. J., Segur H., Solution for Inverse Scattering Transform, SIAM, Philadelphia, 1981 | Zbl

[13] Maslov V. P., Danilov V. G., Volosov K. A., Matematicheskoe modelirovanie protsessov teplomassoperenosa (evolyutsiya dissipativnykh struktur), S dobavleniem N. A. Kolobova, Nauka, M., 1987

[14] Volosov K. A., Danilov V. G., Loginov A. M., “Tochnye avtomodelnye i dvukhfaznye resheniya sistem polulineinykh parabolicheskikh uravnenii”, TMF, 101:2 (1994), 189–199 | MR | Zbl

[15] Fisher R. A., “The wave of advance of advantageous Genes”, Ann. of Eugenics, 7 (1937), 355–369

[16] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Asimptotika resheniya sistemy fazovogo polya i modifitsirovannaya zadacha Stefana”, Differents. uravneniya, 31:3 (1995), 483–491 | MR | Zbl

[17] Danilov V. G., Omelyanov G. A., Radkevich E. V., “O regulyarizatsii dannykh modifitsirovannoi zadachi Stefana”, Matem. zametki, 57:5 (1995), 793–795 | MR | Zbl

[18] Maslov V. P., Omelyanov G. A., “Asimptoticheskie solitonoobraznye resheniya uravnenii s maloi dispersiei”, UMN, 36:3 (1981), 63–126 | MR | Zbl

[19] Maslov V. P., Omelyanov G. A., “Ob usloviyakh tipa Gyugonio dlya beskonechno uzkikh reshenii uravneniya prostykh voln”, Sib. matem. zh., 24:5 (1983), 172–181 | MR

[20] Volosov K. A., Danilov V. G., Kolobov N. A., Maslov V. P., “Lokalizovannye uedinennye volny”, Dokl. AN SSSR, 287:6 (1986), 535–538 | MR

[21] Zaitsev V. F., Polyanin A. D., Spravochnik. Obyknovennye differentsialnye uravneniya, Fizmatlit, M., 2001 | Zbl

[22] Belotelov N. V., Lobanov A. I., “Populyatsionnye modeli nelineinoi diffuzii”, Matem. model., 9:12 (1997), 43–56 | MR | Zbl

[23] Lobanov A. I., Starozhilova T. K., “Kachestvennoe issledovanie nachalnogo etapa formirovaniya neravnovesnykh struktur v modeli tipa “reaktsiya-diffuziya””, Matem. model., 9:12 (1997), 3–15 | MR | Zbl

[24] Melnikova E. V., “Nelineinaya dinamika rasprostraneniya epidemii”, Izv. vuzov. Prikl. nelin. dinam., 6:2 (1998), 110–116 | MR

[25] Kozhonov A. I., “Kraevaya zadacha dlya odnogo klassa parabolicheskikh uravnenii, voznikayuschaya pri opisanii protsessa opresneniya”, Sb. nauch. trudov, 36, Sib. otd. AN SSSR. In-t gidrodinamiki, 1978, 38–46

[26] Volosov K. A., “Invariantnye svoistva anzatsa metoda R. Hirota”, Novye informatsionnye tekhnologii, Materialy chetvertogo seminara, MGIEM(TU), M., 2001

[27] Pukhnachev V. V., “Preobrazovaniya ekvivalentnosti i skrytaya simmetriya evolyutsionnykh uravnenii”, Dokl. AN SSSR, 294:3 (1987), 535–538 | MR | Zbl

[28] Galaktionov V. A., Posashkov S. A., “Tochnye resheniya i invariantnye prostranstva dlya nelineinykh uravnenii gradientnoi diffuzii”, ZhVMiMF, 34:3 (1994), 373–383 | MR

[29] Gilding B. H., Kersner R., “The characterization of reaction-convection-diffusion processes by travelling waves”, J. Differential Equations, 124:1 (1996), 27–29 | DOI | MR