The Axiom of $\Phi$-Holomorphic Planes for Normal Killing Type Manifolds
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 364-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the $\Phi$-holomorphic sectional curvature of normal Killing type manifolds satisfying the axiom of $\Phi$-holomorphic planes.
@article{MZM_2002_71_3_a3,
     author = {E. S. Volkova},
     title = {The {Axiom} of $\Phi${-Holomorphic} {Planes} for {Normal} {Killing} {Type} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {364--372},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a3/}
}
TY  - JOUR
AU  - E. S. Volkova
TI  - The Axiom of $\Phi$-Holomorphic Planes for Normal Killing Type Manifolds
JO  - Matematičeskie zametki
PY  - 2002
SP  - 364
EP  - 372
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a3/
LA  - ru
ID  - MZM_2002_71_3_a3
ER  - 
%0 Journal Article
%A E. S. Volkova
%T The Axiom of $\Phi$-Holomorphic Planes for Normal Killing Type Manifolds
%J Matematičeskie zametki
%D 2002
%P 364-372
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a3/
%G ru
%F MZM_2002_71_3_a3
E. S. Volkova. The Axiom of $\Phi$-Holomorphic Planes for Normal Killing Type Manifolds. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 364-372. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a3/

[1] Kirichenko V. F., “Metody obobschennoi pochti ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 18, VINITI, M., 1986, 25–71 | MR

[2] Ishihara I., “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2 (1979), 171–186 | DOI | MR | Zbl

[3] Tanno S., “Sasakian manifolds with constant $\varphi $-holomorphic sectional curvature”, Tôhoku Math. J., 21:3 (1969), 501–507 | DOI | MR | Zbl

[4] Goldberg S., Jano K., “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1969), 373–382 | MR | Zbl

[5] Efimov N. V., Rozendorn E. R., Lineinaya algebra i mnogomernaya geometriya, Nauka, M., 1970

[6] Kirichenko V. F., “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–734 | MR | Zbl

[7] Volkova E. S., O geometrii normalnykh mnogoobrazii killingova tipa, Dep. VINITI RAN No. 2111-V96, VINITI, M., 1996

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981

[9] Blair D. E., “The theory of Quasi-Sasakian structures”, J. Diff. Geometry, 1 (1967), 331–345 | MR | Zbl

[10] Rustanov A. R., O geometrii kvazisasakievykh mnogoobrazii, Dep. VINITI RAN No. 962-V94, VINITI, M., 1994

[11] Rustanov A. R., “Aksioma $\Phi$-golomorfnykh ploskostei dlya kvazisasakievykh mnogoobrazii”, Nauchnye trudy MPGU im. V. I. Lenina, M., 1994, 39–45

[12] Kiritchenko V. F., “Classification des varietés presque sasakiennes satisfaisant à l'axiome des plans $\Phi$-holomorphes”, C. R. Acad. Sci. Sér. I, 295:13 (1982), 739–742 | MR | Zbl

[13] Kiritchenko V. F., “Sur la géometrie des varietés approximativement cosymplectiques”, C. R. Acad. Sci. Sér. I, 295:12 (1982), 673–676 | MR | Zbl

[14] Hawley N. S., “Constant holomorphic sectional curvature”, Canad. Math. J., 5 (1953), 53–56 | MR | Zbl

[15] Igusa J., “On the structure of a certain class of Kähler manifolds”, Nat. Sc. Rep. Ochanomizu Univ., 31:1 (1980), 42–54 | MR