Global Bifurcations on the Klein bottle. The Unimodal Case
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 348-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal bifurcations of vector fields on the Klein bottle are studied. The problem is to construct a bifurcation scenario that corresponds to disappearance of a saddle-node cycle on the Klein bottle filled with homoclinic trajectories of this cycle. For the global Poincaré map specified by a unimodal function, a complete description of bifurcation scenarios is obtained. The bifurcation scenario corresponding to an arbitrary unimodal function is written out. Also, a classification of bifurcation scenarios that shows which of them can be realized in the unimodal case is given.
@article{MZM_2002_71_3_a2,
     author = {A. R. Borisyuk},
     title = {Global {Bifurcations} on the {Klein} bottle. {The} {Unimodal} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {348--363},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a2/}
}
TY  - JOUR
AU  - A. R. Borisyuk
TI  - Global Bifurcations on the Klein bottle. The Unimodal Case
JO  - Matematičeskie zametki
PY  - 2002
SP  - 348
EP  - 363
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a2/
LA  - ru
ID  - MZM_2002_71_3_a2
ER  - 
%0 Journal Article
%A A. R. Borisyuk
%T Global Bifurcations on the Klein bottle. The Unimodal Case
%J Matematičeskie zametki
%D 2002
%P 348-363
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a2/
%G ru
%F MZM_2002_71_3_a2
A. R. Borisyuk. Global Bifurcations on the Klein bottle. The Unimodal Case. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 348-363. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a2/

[1] Ilyashenko Yu. S., Li Veigu, Nelokalnye bifurkatsii, MTsNMO CheRo, M., 1999

[2] Afraimovich V. S., Shilnikov L. P., “O nekotorykh globalnykh bifurkatsiyakh, svyazannykh s ischeznoveniem nepodvizhnoi tochki tipa sedlo-uzel”, Dokl. AN SSSR, 219:3 (1974), 1281–1285

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, T. I, Nauka, M., 1982

[4] Arnold V. I., “Bernoulli–Euler updown numbers associated with function singularities, their combinatorics and arithmetics”, Duke Math. J., 63:2 (1991), 537–555 | DOI | MR | Zbl