What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 448-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a quantum stochastic differential equation is the interaction representation of the Cauchy problem for the Schrödinger equation with Hamiltonian given by a certain operator restricted by a boundary condition. If the deficiency index of the boundary-value problem is trivial, then the corresponding quantum stochastic differential equation has a unique unitary solution. Therefore, by the deficiency index of a quantum stochastic differential equation we mean the deficiency index of the related symmetric boundary-value problem. In this paper, conditions sufficient for the essential self-adjointness of the symmetric boundary-value problem are obtained. These conditions are closely related to nonexplosion conditions for the pair of master Markov equations that we canonically assign to the quantum stochastic differential equation.
@article{MZM_2002_71_3_a10,
     author = {A. M. Chebotarev},
     title = {What {Is} a {Quantum} {Stochastic} {Differential} {Equation} from the {Point} of {View} of {Functional} {Analysis?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--469},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/}
}
TY  - JOUR
AU  - A. M. Chebotarev
TI  - What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?
JO  - Matematičeskie zametki
PY  - 2002
SP  - 448
EP  - 469
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/
LA  - ru
ID  - MZM_2002_71_3_a10
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%T What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?
%J Matematičeskie zametki
%D 2002
%P 448-469
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/
%G ru
%F MZM_2002_71_3_a10
A. M. Chebotarev. What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 448-469. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/

[1] Accardi L., Frigerio A., Lu Y. G., “The weak coupling limit as a quantum functional central limit”, Comm. Math. Phys., 131 (1990), 537–570 | DOI | MR | Zbl

[2] Accardi L., Gough J., Lu Y. G., “On the stochastic limit for quantum theory”, Reports on Math. Phys., 36:2–3 (1995), 155–187 | DOI | MR | Zbl

[3] Belavkin V. P., “A quantum nonadapted Ito formula and stochastic analysis in Fock space”, J. Funct. Anal., 102:2 (1991), 414–447 | DOI | MR

[4] Accardi L., Gough J., Lu Y. G., “Quantum stochastic linearization of multilinear interactions”, Open Systems Information Dynamics, 5 (1998), 41–65 | DOI | Zbl

[5] Chebotarev A. M., Victorov D. V., “Quantum stochastic processes arising from the strong resolvent limits for the Schrödinger evolution in Fock space”, Quantum probability, Banach Center Publications, 43, Warsaw, 1998, 119–133 | MR | Zbl

[6] Accardi L., Lu Y. G., Volovich I. V., Quantum Theory and its Stochastic Limit, Texts and Monographs in Physics, Springer, 2001 | Zbl

[7] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolution”, Comm. Math. Phys., 93:3 (1984) | DOI | MR | Zbl

[8] Meyer P. A., Quantum Probability for Probabilists, Lecture Notes in Math., 1338, 1993

[9] Attal S., “Classical and quantum stochastic calculus”, Quantum Probability Comm., X (1998), 1–52 | MR

[10] Journe J. L., “Structure des cocycles Markoviens sur l'espace de Fock”, Probab. Theor. and Related Fields, 75 (1987), 291–316 | DOI | MR | Zbl

[11] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992 | Zbl

[12] Chebotarev A. M., “Kvantovoe stokhasticheskoe uravnenie unitarno ekvivalentno simmetrichnoi kraevoi zadache dlya uravneniya Shredingera”, Matem. zametki, 61:4 (1997), 612–622 | MR | Zbl

[13] Chebotarev A. M., “Quantum stochastic differential equation is unitarily equivalent to a symmetric boundary value problem in Fock space”, Infin. Dimens. Anal. Quantum Probab. Related Topics, 1:2 (1998), 175–199 | DOI | MR | Zbl

[14] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum Probability and Related Topics, VII, World Sci. Publ., Singapore, 1992, 79–92 | MR

[15] Fagnola F., “Characterization of isometric and unitary weakly differentiable cocycles in Fock space”, Quantum Probability and Related Topics: QP-PQ, VIII, World Sci. Publ., River Edge, N.J., 1993, 143–163 | MR

[16] Gregoratti M., “The Hamiltonian operator associated to some quantum stochastic evolutions”, Infin. Dimens. Anal. Quantum Probab. Related Topics, 3:4 (2000), 483–503 | DOI | MR | Zbl

[17] Gregoratti M., The Hamiltonian Operator Associated to Some Quantum Stochastic Evolutions, Preprint No 455/P, Politecnico di Milano, 2001

[18] Neimark M. A., Linear Differential Operators, Nauka, Moscow, 1969

[19] Kato T., Perturbation Theory for Linear Operators, Springer, 1976

[20] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153:2 (1998), 382–404 | DOI | MR | Zbl

[21] Chebotarev A. M., Lectures on Quantum Probability, Sociedad Matemática Mexicana, Aportaciones Matemáticas, 14, México, 2000 | MR | Zbl

[22] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochastic Stone's theorem”, Stochastic Partial Differential Equations and Applications, Pitman Research Notes in Math., 268, Longman Sci. Techn., 1992, 86–97 | MR | Zbl