Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_3_a10, author = {A. M. Chebotarev}, title = {What {Is} a {Quantum} {Stochastic} {Differential} {Equation} from the {Point} of {View} of {Functional} {Analysis?}}, journal = {Matemati\v{c}eskie zametki}, pages = {448--469}, publisher = {mathdoc}, volume = {71}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/} }
TY - JOUR AU - A. M. Chebotarev TI - What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis? JO - Matematičeskie zametki PY - 2002 SP - 448 EP - 469 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/ LA - ru ID - MZM_2002_71_3_a10 ER -
A. M. Chebotarev. What Is a Quantum Stochastic Differential Equation from the Point of View of Functional Analysis?. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 448-469. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a10/
[1] Accardi L., Frigerio A., Lu Y. G., “The weak coupling limit as a quantum functional central limit”, Comm. Math. Phys., 131 (1990), 537–570 | DOI | MR | Zbl
[2] Accardi L., Gough J., Lu Y. G., “On the stochastic limit for quantum theory”, Reports on Math. Phys., 36:2–3 (1995), 155–187 | DOI | MR | Zbl
[3] Belavkin V. P., “A quantum nonadapted Ito formula and stochastic analysis in Fock space”, J. Funct. Anal., 102:2 (1991), 414–447 | DOI | MR
[4] Accardi L., Gough J., Lu Y. G., “Quantum stochastic linearization of multilinear interactions”, Open Systems Information Dynamics, 5 (1998), 41–65 | DOI | Zbl
[5] Chebotarev A. M., Victorov D. V., “Quantum stochastic processes arising from the strong resolvent limits for the Schrödinger evolution in Fock space”, Quantum probability, Banach Center Publications, 43, Warsaw, 1998, 119–133 | MR | Zbl
[6] Accardi L., Lu Y. G., Volovich I. V., Quantum Theory and its Stochastic Limit, Texts and Monographs in Physics, Springer, 2001 | Zbl
[7] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolution”, Comm. Math. Phys., 93:3 (1984) | DOI | MR | Zbl
[8] Meyer P. A., Quantum Probability for Probabilists, Lecture Notes in Math., 1338, 1993
[9] Attal S., “Classical and quantum stochastic calculus”, Quantum Probability Comm., X (1998), 1–52 | MR
[10] Journe J. L., “Structure des cocycles Markoviens sur l'espace de Fock”, Probab. Theor. and Related Fields, 75 (1987), 291–316 | DOI | MR | Zbl
[11] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992 | Zbl
[12] Chebotarev A. M., “Kvantovoe stokhasticheskoe uravnenie unitarno ekvivalentno simmetrichnoi kraevoi zadache dlya uravneniya Shredingera”, Matem. zametki, 61:4 (1997), 612–622 | MR | Zbl
[13] Chebotarev A. M., “Quantum stochastic differential equation is unitarily equivalent to a symmetric boundary value problem in Fock space”, Infin. Dimens. Anal. Quantum Probab. Related Topics, 1:2 (1998), 175–199 | DOI | MR | Zbl
[14] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum Probability and Related Topics, VII, World Sci. Publ., Singapore, 1992, 79–92 | MR
[15] Fagnola F., “Characterization of isometric and unitary weakly differentiable cocycles in Fock space”, Quantum Probability and Related Topics: QP-PQ, VIII, World Sci. Publ., River Edge, N.J., 1993, 143–163 | MR
[16] Gregoratti M., “The Hamiltonian operator associated to some quantum stochastic evolutions”, Infin. Dimens. Anal. Quantum Probab. Related Topics, 3:4 (2000), 483–503 | DOI | MR | Zbl
[17] Gregoratti M., The Hamiltonian Operator Associated to Some Quantum Stochastic Evolutions, Preprint No 455/P, Politecnico di Milano, 2001
[18] Neimark M. A., Linear Differential Operators, Nauka, Moscow, 1969
[19] Kato T., Perturbation Theory for Linear Operators, Springer, 1976
[20] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153:2 (1998), 382–404 | DOI | MR | Zbl
[21] Chebotarev A. M., Lectures on Quantum Probability, Sociedad Matemática Mexicana, Aportaciones Matemáticas, 14, México, 2000 | MR | Zbl
[22] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochastic Stone's theorem”, Stochastic Partial Differential Equations and Applications, Pitman Research Notes in Math., 268, Longman Sci. Techn., 1992, 86–97 | MR | Zbl