Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_2_a7, author = {I. Ya. Novikov}, title = {Asymptotics of the {Roots} of {Bernstein} {Polynomials} {Used} in the {Construction} of {Modified} {Daubechies} {Wavelets}}, journal = {Matemati\v{c}eskie zametki}, pages = {239--253}, publisher = {mathdoc}, volume = {71}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/} }
TY - JOUR AU - I. Ya. Novikov TI - Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets JO - Matematičeskie zametki PY - 2002 SP - 239 EP - 253 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/ LA - ru ID - MZM_2002_71_2_a7 ER -
I. Ya. Novikov. Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 239-253. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/
[1] Daubechies I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure Appl. Math., 46 (1988), 909–996 | DOI | MR
[2] Chui C. K., Wang J., High-Order Orthonormal Scaling Functions and Wavelets Give Poor Time-Frequency Localization, CAT Report # 322, 1994, p. 1–24
[3] Novikov I. Ya., “Modified Daubechies wavelets preserving localization with growth of smoothness”, East J. Appr., 1:3 (1995), 341–348 | MR | Zbl
[4] Novikov I. Ya., “Konstanty neopredelennosti dlya modifitsirovannykh vspleskov Dobeshi”, Izv. Tul. gos. un-ta. Ser. Matem. Mekh. Informatika, 4, no. 1, TulGU, Tula, 1998, 107–111 | MR
[5] Bernshtein S., “Demonstration de theoréme de Weierstrass fondée sur le calcul des probabilities”, Soobsch. Kharkovskogo matem. obschestva. Ser. 2, 13:1 (1912–1913), 1–2 | MR
[6] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 2, Nauka, M., 1978
[7] Shen J., Strang G., “Asymptotics of Daubechies filters, scaling functions, and wavelets”, Applied and Comp. Harm. Analysis, 5 (1998), 312–331 | DOI | MR | Zbl
[8] Kateb D., Lemarie-Rieusset P. G., The phase of the Daubechies filters, Preprint No 62, Université de Paris-Sud Mathématiques, 1994, p. 1–42
[9] Shen J., Strang G., The Zeros of the Daubechies Polynomials, Preprint, Massachusetts Institute of Technology, 1995 \, p. 1–12
[10] Temme N. M., Asymptotics and Numerics of Zeros of Polynomials that are Related to Daubechies Wavelets, Preprint AM-R9613, Centrum voor Wiskunde en Informatica, 1996, p. 1–12
[11] Jentzsch R., Untersuchungen zur Theorie der Folgen analytischer Functionen, Inaug.-diss., Berlin, 1914
[12] Kantorovich L. V., “O skhodimosti posledovatelnosti polinomov Bernshteina za predelami osnovnogo intervala”, Izv. AN SSSR, 1931, 1103–1115 | Zbl
[13] Temme N. M., “Asymptotic inversion of the incomplete beta-function”, J. Comp. Appl. Math., 41 (1992), 145–157 | DOI | MR | Zbl