Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 239-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the asymptotics of roots of a sequence of Bernstein polynomials approximating a piecewise linear function. This sequence arises in the construction of modified compactly supported wavelets that, in contrast to classical Daubechies wavelets, preserve localization with the growth of smoothness. It is proved that the limiting curve for roots is the boundary of the domain of convergence of the Bernstein polynomials on the complex plane.
@article{MZM_2002_71_2_a7,
     author = {I. Ya. Novikov},
     title = {Asymptotics of the {Roots} of {Bernstein} {Polynomials} {Used} in the {Construction} of {Modified} {Daubechies} {Wavelets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--253},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/}
}
TY  - JOUR
AU  - I. Ya. Novikov
TI  - Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets
JO  - Matematičeskie zametki
PY  - 2002
SP  - 239
EP  - 253
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/
LA  - ru
ID  - MZM_2002_71_2_a7
ER  - 
%0 Journal Article
%A I. Ya. Novikov
%T Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets
%J Matematičeskie zametki
%D 2002
%P 239-253
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/
%G ru
%F MZM_2002_71_2_a7
I. Ya. Novikov. Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 239-253. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/

[1] Daubechies I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure Appl. Math., 46 (1988), 909–996 | DOI | MR

[2] Chui C. K., Wang J., High-Order Orthonormal Scaling Functions and Wavelets Give Poor Time-Frequency Localization, CAT Report # 322, 1994, p. 1–24

[3] Novikov I. Ya., “Modified Daubechies wavelets preserving localization with growth of smoothness”, East J. Appr., 1:3 (1995), 341–348 | MR | Zbl

[4] Novikov I. Ya., “Konstanty neopredelennosti dlya modifitsirovannykh vspleskov Dobeshi”, Izv. Tul. gos. un-ta. Ser. Matem. Mekh. Informatika, 4, no. 1, TulGU, Tula, 1998, 107–111 | MR

[5] Bernshtein S., “Demonstration de theoréme de Weierstrass fondée sur le calcul des probabilities”, Soobsch. Kharkovskogo matem. obschestva. Ser. 2, 13:1 (1912–1913), 1–2 | MR

[6] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 2, Nauka, M., 1978

[7] Shen J., Strang G., “Asymptotics of Daubechies filters, scaling functions, and wavelets”, Applied and Comp. Harm. Analysis, 5 (1998), 312–331 | DOI | MR | Zbl

[8] Kateb D., Lemarie-Rieusset P. G., The phase of the Daubechies filters, Preprint No 62, Université de Paris-Sud Mathématiques, 1994, p. 1–42

[9] Shen J., Strang G., The Zeros of the Daubechies Polynomials, Preprint, Massachusetts Institute of Technology, 1995 \, p. 1–12

[10] Temme N. M., Asymptotics and Numerics of Zeros of Polynomials that are Related to Daubechies Wavelets, Preprint AM-R9613, Centrum voor Wiskunde en Informatica, 1996, p. 1–12

[11] Jentzsch R., Untersuchungen zur Theorie der Folgen analytischer Functionen, Inaug.-diss., Berlin, 1914

[12] Kantorovich L. V., “O skhodimosti posledovatelnosti polinomov Bernshteina za predelami osnovnogo intervala”, Izv. AN SSSR, 1931, 1103–1115 | Zbl

[13] Temme N. M., “Asymptotic inversion of the incomplete beta-function”, J. Comp. Appl. Math., 41 (1992), 145–157 | DOI | MR | Zbl