Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 239-253
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study of the asymptotics of roots of a sequence of Bernstein polynomials approximating a piecewise linear function. This sequence arises in the construction of modified compactly supported wavelets that, in contrast to classical Daubechies wavelets, preserve localization with the growth of smoothness. It is proved that the limiting curve for roots is the boundary of the domain of convergence of the Bernstein polynomials on the complex plane.
@article{MZM_2002_71_2_a7,
author = {I. Ya. Novikov},
title = {Asymptotics of the {Roots} of {Bernstein} {Polynomials} {Used} in the {Construction} of {Modified} {Daubechies} {Wavelets}},
journal = {Matemati\v{c}eskie zametki},
pages = {239--253},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/}
}
TY - JOUR AU - I. Ya. Novikov TI - Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets JO - Matematičeskie zametki PY - 2002 SP - 239 EP - 253 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/ LA - ru ID - MZM_2002_71_2_a7 ER -
I. Ya. Novikov. Asymptotics of the Roots of Bernstein Polynomials Used in the Construction of Modified Daubechies Wavelets. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 239-253. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a7/