Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 182-193

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for an orthogonal series to be the Fourier series of a function in the space $L^p[0;1]$, $p\in (1;\infty )$, are obtained. In the special case of regular summation methods we recover the classical results of Orlicz and Lomnicki.
@article{MZM_2002_71_2_a2,
     author = {I. N. Brui},
     title = {Conservative {Means} of {Orthogonal} {Series} and the {Spaces} $L^p[0;1]$, $p\in (1;\infty )$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {182--193},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a2/}
}
TY  - JOUR
AU  - I. N. Brui
TI  - Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 182
EP  - 193
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a2/
LA  - ru
ID  - MZM_2002_71_2_a2
ER  - 
%0 Journal Article
%A I. N. Brui
%T Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$
%J Matematičeskie zametki
%D 2002
%P 182-193
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a2/
%G ru
%F MZM_2002_71_2_a2
I. N. Brui. Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 182-193. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a2/