The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 292-297
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hoff equation $(\lambda +\Delta )u_t=-\alpha u-\beta u^3$ describes the H-beam buckling dynamics. We show that the phase space of the Hoff equation is a simple $C^\infty $ Banach manifold modeled on a subspace complementary to the kernel $\ker (\lambda +\Delta )$.
@article{MZM_2002_71_2_a11,
author = {G. A. Sviridyuk and V. O. Kazak},
title = {The {Phase} {Space} of an {Initial-Boundary} {Value} {Problem} for the {Hoff} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {292--297},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a11/}
}
TY - JOUR AU - G. A. Sviridyuk AU - V. O. Kazak TI - The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation JO - Matematičeskie zametki PY - 2002 SP - 292 EP - 297 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a11/ LA - ru ID - MZM_2002_71_2_a11 ER -
G. A. Sviridyuk; V. O. Kazak. The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 292-297. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a11/