The Eta-Invariant and Pontryagin Duality in $K$-Theory
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 271-291

Voir la notice de l'article provenant de la source Math-Net.Ru

The topological significance of the spectral Atiyah–Patodi–Singer $\eta$-invariant is investigated. We show that twice the fractional part of the invariant is computed by the linking pairing in $K$-theory with the orientation bundle of the manifold. Pontryagin duality implies the nondegeneracy of the linking form. An example of a nontrivial fractional part for an even-order operator is presented.
@article{MZM_2002_71_2_a10,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {The {Eta-Invariant} and {Pontryagin} {Duality} in $K${-Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {271--291},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - The Eta-Invariant and Pontryagin Duality in $K$-Theory
JO  - Matematičeskie zametki
PY  - 2002
SP  - 271
EP  - 291
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/
LA  - ru
ID  - MZM_2002_71_2_a10
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T The Eta-Invariant and Pontryagin Duality in $K$-Theory
%J Matematičeskie zametki
%D 2002
%P 271-291
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/
%G ru
%F MZM_2002_71_2_a10
A. Yu. Savin; B. Yu. Sternin. The Eta-Invariant and Pontryagin Duality in $K$-Theory. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 271-291. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/