The Eta-Invariant and Pontryagin Duality in $K$-Theory
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 271-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topological significance of the spectral Atiyah–Patodi–Singer $\eta$-invariant is investigated. We show that twice the fractional part of the invariant is computed by the linking pairing in $K$-theory with the orientation bundle of the manifold. Pontryagin duality implies the nondegeneracy of the linking form. An example of a nontrivial fractional part for an even-order operator is presented.
@article{MZM_2002_71_2_a10,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {The {Eta-Invariant} and {Pontryagin} {Duality} in $K${-Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {271--291},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - The Eta-Invariant and Pontryagin Duality in $K$-Theory
JO  - Matematičeskie zametki
PY  - 2002
SP  - 271
EP  - 291
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/
LA  - ru
ID  - MZM_2002_71_2_a10
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T The Eta-Invariant and Pontryagin Duality in $K$-Theory
%J Matematičeskie zametki
%D 2002
%P 271-291
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/
%G ru
%F MZM_2002_71_2_a10
A. Yu. Savin; B. Yu. Sternin. The Eta-Invariant and Pontryagin Duality in $K$-Theory. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 271-291. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a10/

[1] Gilkey P. B., “The eta invariant of even-order operators”, Lecture Notes in Math., 1410, 1989, 202–211 | MR | Zbl

[2] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I; II; III”, Math. Proc. Cambridge Phil. Soc., 77 (1975), 43–69 ; 78 (1976), 405–432 ; 79 (1976), 315–330 | DOI | MR | Zbl | DOI | MR | DOI | MR

[3] Gilkey P. B., “The eta invariant for even dimensional $\operatorname{Pin}^c$ manifolds”, Advances in Math., 58 (1985), 243–284 | DOI | MR | Zbl

[4] Bahri A., Gilkey P., “The eta invariant, $\operatorname{Pin}^c$ bordism, and equivariant $\operatorname{Spin}^c$ bordism for cyclic $2$-groups”, Pacific J. Math., 128:1 (1987), 1–24 | MR | Zbl

[5] Pontrjagin L. S., “Über den algebraischen Inhalt topologischer Dualitatssatze”, Math. Ann., 105:2 (1931), 165–205 | DOI | MR | Zbl

[6] Pontryagin L. S., “Topologicheskie teoremy dvoistvennosti”, UMN, 2:2 (1947), 21–44 | MR

[7] Seifert H., Threllfall W., Lehrbuch der Topologie, Teubner, Leipzig, 1934 | Zbl

[8] Fomenko A., Fuks D., Kurs gomotopicheskoi topologii, Nauka, M., 1989

[9] Milnor J., “Torsion et type simple d'homotopie”, Essays Topol. Relat. Top, Mem. dédiés à Georges de Rham, 1970, 12–17 | MR | Zbl

[10] Brumfiel G., Morgan J., “Quadratic functions, the index modulo $8$, and a $\mathbb Z/4$-Hirzebruch formula”, Topology, 12 (1973), 105–122 | DOI | MR | Zbl

[11] Kervaire M., Milnor J., “Groups of homotopy spheres, I”, Ann. Math., 77:3 (1963), 504–537 | DOI | MR | Zbl

[12] Moore G., Witten E., Self-duality, Ramond–Ramond fields and $K$-theory, , 1999 E-print hep-th/9912279

[13] Savin A. Yu., Sternin B. Yu., “Ellipticheskie operatory v chetnykh podprostranstvakh”, Matem. sb., 190:8 (1999), 125–160 | MR | Zbl

[14] Savin A. Yu., Sternin B. Yu., Elliptic Operators in Odd Subspaces, Preprint No. 99/11 (Juni 1999), Univ. Potsdam, Institut für Mathematik, Potsdam, 1999; E-print math.DG/9907039

[15] Savin A., Schulze B.-W., Sternin B., Elliptic Operators in Subspaces, Preprint No. 00/04 (Februar 2000), Univ. Potsdam, Institut für Mathematik, Potsdam, 2000 | Zbl

[16] Savin A., Schulze B.-W., Sternin B., Elliptic Operators in Subspaces and the Eta Invariant, Preprint No. 99/14 (Juni 1999), Univ. Potsdam, Institut für Mathematik, Potsdam, 1999; E-print math.DG/9907047

[17] Karoubi M., $K$-Theory. An Introduction, Grundlehren Math. Wiss., 226, Springer-Verlag, Berline, 1978 | MR | Zbl

[18] Atiyah M. F., Singer I. M., “The index of elliptic operators, I”, Ann. of Math., 87 (1968), 484–530 | DOI | MR | Zbl

[19] Birman M. S., Solomyak M. Z., “O podprostranstvakh, dopuskayuschikh psevdodifferentsialnyi proektor”, Vestn. LGU, 1982, no. 1, 18–25 | MR | Zbl

[20] Bott R., Tu L., Differential Forms in Algebraic Topology, Graduate Texts in Math., 82, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl

[21] Baum P., Douglas R. G., “Toeplitz operators and Poincaré duality”, Toeplitz Centennial, Proceedings of Toeplitz Memory Conf. (Tel Aviv, 1981), Operator Theory Adv. Appl., 4, 1982, 137–166 | MR | Zbl

[22] Karoubi M., “Algèbres de Clifford et $K$-theorie”, Ann. Sci. Ecole Norm. Sup., 4:1 (1968), 161–270 | MR | Zbl

[23] Mischenko A. S., Vektornye rassloeniya i ikh primeneniya, Nauka, M., 1984

[24] Connes A., Sullivan D., Teleman N., “Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes”, Topology, 33:4 (1994), 663–681 | DOI | MR | Zbl