On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 168-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the continuity of the general nonlinear superposition operator (generalized Nemytskii operator) acting from the space $C^m(\overline \Omega)$ of differentiable functions on a bounded domain $\Omega$ to the Lebesgue space $L_p(\Omega)$. The values of operators on a function $u\in C^m(\overline \Omega)$ are locally determined by the values of both the function $u$ itself and all of its partial derivatives up to order $m$ inclusive. In certain particular cases, the sufficient conditions obtained are proved to be necessary as well. The results are illustrated by several examples, and an application to the theory of Sobolev spaces is also given.
@article{MZM_2002_71_2_a1,
     author = {K. O. Besov},
     title = {On the {Continuity} of the {Generalized} {Nemytskii} {Operator} on {Spaces} of {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {168--181},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 168
EP  - 181
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/
LA  - ru
ID  - MZM_2002_71_2_a1
ER  - 
%0 Journal Article
%A K. O. Besov
%T On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions
%J Matematičeskie zametki
%D 2002
%P 168-181
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/
%G ru
%F MZM_2002_71_2_a1
K. O. Besov. On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 168-181. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/

[1] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956

[2] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956

[3] Shragin I. V., “O nepreryvnosti operatora Nemytskogo”, Funktsion. analiz i ego primenenie, Trudy V Vsesoyuznoi konferentsii po funktsionalnomu analizu i ego primeneniyu, Izd-vo AN AzSSR, Baku, 1961, 272–277

[4] Chiappinelli R., Nugari R., “The Nemitskii operator in Hölder spaces: some necessary and sufficient conditions”, J. London Math. Soc. (2), 51:2 (1995), 365–372 | MR | Zbl

[5] Sickel W., “Composition operators acting on Sobolev spaces of fractional order—a survey on sufficient and necessary conditions”, Function Spaces, Differential Operators, and Nonlinear Analysis (Paseky nad Jizerou, 1995), Prometheus, Prague, 1996, 159–182 | MR | Zbl

[6] Appell J., Zabrejko P. P., Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990 | Zbl

[7] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[8] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl