Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_2_a1, author = {K. O. Besov}, title = {On the {Continuity} of the {Generalized} {Nemytskii} {Operator} on {Spaces} of {Differentiable} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {168--181}, publisher = {mathdoc}, volume = {71}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/} }
K. O. Besov. On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 168-181. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a1/
[1] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956
[2] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, M., 1956
[3] Shragin I. V., “O nepreryvnosti operatora Nemytskogo”, Funktsion. analiz i ego primenenie, Trudy V Vsesoyuznoi konferentsii po funktsionalnomu analizu i ego primeneniyu, Izd-vo AN AzSSR, Baku, 1961, 272–277
[4] Chiappinelli R., Nugari R., “The Nemitskii operator in Hölder spaces: some necessary and sufficient conditions”, J. London Math. Soc. (2), 51:2 (1995), 365–372 | MR | Zbl
[5] Sickel W., “Composition operators acting on Sobolev spaces of fractional order—a survey on sufficient and necessary conditions”, Function Spaces, Differential Operators, and Nonlinear Analysis (Paseky nad Jizerou, 1995), Prometheus, Prague, 1996, 159–182 | MR | Zbl
[6] Appell J., Zabrejko P. P., Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990 | Zbl
[7] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996
[8] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl