Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Each nonrecursive recursively enumerable set is proved to have a $Q$-complete major subset. Classes of simple sets that contain $Q$-complete sets are determined.
@article{MZM_2002_71_1_a8,
     author = {R. Sh. Omanadze},
     title = {Major {Sets,} {Classes} of {Simple} {Sets,} and $Q${-Complete} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/}
}
TY  - JOUR
AU  - R. Sh. Omanadze
TI  - Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
JO  - Matematičeskie zametki
PY  - 2002
SP  - 100
EP  - 108
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/
LA  - ru
ID  - MZM_2002_71_1_a8
ER  - 
%0 Journal Article
%A R. Sh. Omanadze
%T Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
%J Matematičeskie zametki
%D 2002
%P 100-108
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/
%G ru
%F MZM_2002_71_1_a8
R. Sh. Omanadze. Major Sets, Classes of Simple Sets, and $Q$-Complete Sets. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/

[1] Herrmann E., “Classes of simple sets, filter properties, and their mutual position”, Seminarber. Humbolt-Univ. Berlin. Sekt. Math., 1984, no. 60, 60–72 | MR | Zbl

[2] Omanadze R. Sh., “Klassy rekursivno perechislimykh mnozhestv i $Q$-svodimost”, Matem. zametki, 45:2 (1989), 79–82 | MR

[3] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972

[4] Marchenkov S. S., “Ob odnom klasse nepolnykh mnozhestv”, Matem. zametki, 20:4 (1976), 473–478 | MR | Zbl

[5] Solovev V. D., “$Q$-svodimost i gipergiperprostye mnozhestva”, Veroyatnostnye metody i kibernetika, no. 10–11, KazGU, Kazan, 1974, 121–128

[6] Gill J. T., Morris P. H., “On subcreative sets and $S$-reducibility”, J. Symb. Logic, 39:4 (1974), 669–677 | DOI | MR

[7] Lachlan A. H., “On the lattice of recursively enumerable sets”, Trans. Amer. Math. Soc., 130:1 (1968), 1–37 | DOI | MR | Zbl

[8] Herrmann E., “Die Verbandseigenschaften der rekursiv aufzählbaren Mengen”, Seminarber. Humbolt-Univ. Berlin. Sekt. Math., 1981, no. 36

[9] Blum M., Marques I., “On complexity properties of recursively enumerable sets”, J. Symb. Logic, 38:4 (1973), 579–593 | DOI | MR

[10] Lerman M., “Some theorems of $r$-maximal sets and major subsets of recursively enumerable sets”, J. Symb. Logic, 36 (1971), 193–215 | DOI | MR | Zbl

[11] Degtev A. N., “Ob $m$-stepenyakh prostykh mnozhestv”, Algebra i logika, 11:2 (1972), 130–139 | MR | Zbl

[12] Arslanov M. M., “Ob odnom klasse giperprostykh nepolnykh mnozhestv”, Matem. zametki, 38:6 (1985), 872–874 | MR | Zbl

[13] Degtev A. N., “Nekotorye klassy giperimmunnykh mnozhestv”, Algebraicheskie sistemy, Irkutsk, 1976, 21–36

[14] Robinson R. W., “Simplicity of recursively enumerable sets”, J. Symb. Logic, 32:2 (1967), 162–172 | DOI | MR | Zbl

[15] Morozov A. S., “Ob odnom klasse rekursivno perechislimykh mnozhestv”, Sib. matem. zh., 23:2 (1987), 124–128

[16] Degtev A. N., “Nasledstvennye mnozhestva i tablichnaya svodimost”, Algebra i logika, 11:3 (1972), 257–269 | MR | Zbl