Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Each nonrecursive recursively enumerable set is proved to have a $Q$-complete major subset. Classes of simple sets that contain $Q$-complete sets are determined.
@article{MZM_2002_71_1_a8,
author = {R. Sh. Omanadze},
title = {Major {Sets,} {Classes} of {Simple} {Sets,} and $Q${-Complete} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {100--108},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/}
}
R. Sh. Omanadze. Major Sets, Classes of Simple Sets, and $Q$-Complete Sets. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/