Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Each nonrecursive recursively enumerable set is proved to have a $Q$-complete major subset. Classes of simple sets that contain $Q$-complete sets are determined.
@article{MZM_2002_71_1_a8,
     author = {R. Sh. Omanadze},
     title = {Major {Sets,} {Classes} of {Simple} {Sets,} and $Q${-Complete} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/}
}
TY  - JOUR
AU  - R. Sh. Omanadze
TI  - Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
JO  - Matematičeskie zametki
PY  - 2002
SP  - 100
EP  - 108
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/
LA  - ru
ID  - MZM_2002_71_1_a8
ER  - 
%0 Journal Article
%A R. Sh. Omanadze
%T Major Sets, Classes of Simple Sets, and $Q$-Complete Sets
%J Matematičeskie zametki
%D 2002
%P 100-108
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/
%G ru
%F MZM_2002_71_1_a8
R. Sh. Omanadze. Major Sets, Classes of Simple Sets, and $Q$-Complete Sets. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a8/