Linear Transformations and Reduction Formulas for the Gelfand Hypergeometric Functions Associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 88-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the Gelfand hypergeometric functions associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$ with some special relations imposed on the parameters can be represented in terms of hypergeometric series of a simpler form. In particular, a function associated with the Grassmannian $G_{2,4}$ (the case of three variables) can be represented (depending on the form of the additional conditions on the parameters of the series) in terms of the Horn series $H_2,G_2$, of the Appell functions $F_1,F_2,F_3$ and of the Gauss functions $F^2_1$, while the functions associated with the Grassmannian $G_{3,6}$ (the case of four variables) can be represented in terms of the series $G_2,F_1,F_2,F_3$ and$F^2_1$. The relation between certain formulas and the Gelfand–Graev–Retakh reduction formula is discussed. Combined linear transformations and universal elementary reduction rules underlying the method were implemented by a computer program developed by the authors on the basis of the computer algebra system Maple V-4.
@article{MZM_2002_71_1_a7,
     author = {A. W. Niukkanen and O. S. Paramonova},
     title = {Linear {Transformations} and {Reduction} {Formulas} for the {Gelfand} {Hypergeometric} {Functions} {Associated} with the {Grassmannians} $G_{2,4}$ and $G_{3,6}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {88--99},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a7/}
}
TY  - JOUR
AU  - A. W. Niukkanen
AU  - O. S. Paramonova
TI  - Linear Transformations and Reduction Formulas for the Gelfand Hypergeometric Functions Associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 88
EP  - 99
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a7/
LA  - ru
ID  - MZM_2002_71_1_a7
ER  - 
%0 Journal Article
%A A. W. Niukkanen
%A O. S. Paramonova
%T Linear Transformations and Reduction Formulas for the Gelfand Hypergeometric Functions Associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$
%J Matematičeskie zametki
%D 2002
%P 88-99
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a7/
%G ru
%F MZM_2002_71_1_a7
A. W. Niukkanen; O. S. Paramonova. Linear Transformations and Reduction Formulas for the Gelfand Hypergeometric Functions Associated with the Grassmannians $G_{2,4}$ and $G_{3,6}$. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 88-99. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a7/

[1] Niukkanen A. V., “Rasprostranenie printsipa faktorizatsii na gipergeometricheskie ryady obschego vida”, Matem. zametki, 67:4 (2000), 573–581 | MR | Zbl

[2] Niukkanen A. V., “Obschie lineinye preobrazovaniya gipergeometricheskikh funktsii”, Matem. zametki, 70:5 (2001), 769–779 | MR | Zbl

[3] Niukkanen A. W., “Generalized hypergeometric series ${}^N\!F(x_1,\dots,x_N)$ arising in physical and quantum chemical applications”, J. Phys. A. Math. Gen., 16 (1983), 1813–1825 | DOI | MR | Zbl

[4] Niukkanen A. W., “Generalized operator reduction formula for multiple hypergeometric series”, J. Phys. A. Math. Gen., 17 (1984), L731–L736 | DOI | MR | Zbl

[5] Niukkanen A. V., “Novyi metod v teorii gipergeometricheskikh ryadov i spetsialnykh funktsii matematicheskoi fiziki”, UMN, 43:3 (1988), 191–192 | MR | Zbl

[6] Niukkanen A. V., “Novyi podkhod k teorii gipergeometricheskikh ryadov i spetsialnykh funktsii matematicheskoi fiziki”, Matem. zametki, 50:1 (1991), 65–73 | MR | Zbl

[7] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, UMN, 47:4 (1992), 3–82 | MR | Zbl

[8] Gelfand I. M., Graev M. I., Retakh V. S., $\Gamma$-ryady i obschie gipergeometricheskie funktsii na mnogoobrazii $(k\times n)$-matrits, Preprint IPM No. 64, M., 1990

[9] Gelfand I. M., Graev M. I., Retakh V. S., “Formuly privedeniya dlya gipergeometricheskikh funktsii na grassmaniane $G_{k,n}$”, Dokl. AN SSSR, 318:4 (1991), 793–797 | Zbl

[10] Gelfand I. M., Graev M. I., Retakh V. S., “Gipergeometricheskie funktsii, svyazannye s grassmanianom $G_{3,6}$”, Matem. sb., 180:1 (1989), 3–38 | Zbl

[11] Gelfand I. M., “Obschaya teoriya gipergeometricheskikh funktsii”, Dokl. AN SSSR, 288:1 (1986), 14–18 | MR | Zbl

[12] Gelfand I. M., Gelfand S. I., “Obobschennye gipergeometricheskie uravneniya”, Dokl. AN SSSR, 288:2 (1986), 279–283 | MR | Zbl

[13] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chichester, 1985 | Zbl

[14] Pandey R. C., “On certain hypergeometric transformations”, J. Math. Mech., 12 (1963), 113–118 | MR | Zbl

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973

[16] Niukkanen A. V., “Novaya teoriya gipergeometricheskikh ryadov i perspektivy ee ispolzovaniya v sistemakh kompyuternoi algebry”, Fundament. i prikl. matem., 5:3 (1999), 717–745 | MR | Zbl

[17] Niukkanen A. V., “Metod operatornoi faktorizatsii – osnova edninoi teorii gipergeometricheskikh ryadov”, Matematika i mekhanika v sovremennom mire, Trudy 1-i Rossiiskoi chebyshevskoi konferentsii, Kaluga, 2001, 79–89

[18] Niukkanen A. V., Niukkanen P. A., “Diagrammnaya tekhnika v teorii gipergeometricheskikh ryadov ot mnogikh peremennykh”, Programmirovanie, 2001, no. 1, 41–48 | MR | Zbl

[19] Niukkanen A. V., “Novye algoritmy v teorii gipergeometricheskikh ryadov i razlozheniya Berchnella–Chondi”, Programmirovanie, 2000, no. 2, 67–69 | MR

[20] Niukkanen A. V., “Formuly analiticheskogo prodolzheniya gipergeometricheskikh ryadov ot mnogikh peremennykh”, Fundament. i prikl. matem., 7:1 (2001), 1–16 | MR

[21] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions. I; II”, Quart. J. Math. (Oxford), 11 (1940), 249–270 ; Quart. J. Math. (Oxford), 12 (1941), 112–128 | DOI | MR | Zbl | DOI | MR | Zbl