Some Generalizations of the Notion of Length
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 875-881
Cet article a éte moissonné depuis la source Math-Net.Ru
Two numerical characteristics of a nonrectifiable arc $\gamma\subset\mathbb C$ generalizing the notion of length are introduced. Geometrically, this notion can naturally be generalized as the least upper bound of the sums $\sum\Phi(a_j)$, where $a_j$ are the lengths of segments of a polygonal line inscribed in the curve $\gamma$ and $\Phi$ is a given function. On the other hand, the length of $\gamma$ is the norm of the functional $f\mapsto\int_\gamma fdz$ in the space $C(\gamma)$; its norms in other spaces can be considered as analytical generalizations of length. In this paper, we establish conditions under which the generalized geometric rectifiability of a curve $\gamma$ implies its generalized analytic rectifiability.
@article{MZM_2001_70_6_a5,
author = {B. A. Kats},
title = {Some {Generalizations} of the {Notion} of {Length}},
journal = {Matemati\v{c}eskie zametki},
pages = {875--881},
year = {2001},
volume = {70},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a5/}
}
B. A. Kats. Some Generalizations of the Notion of Length. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 875-881. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a5/
[1] Young L. C., “General inequalities for Stieltjes integrals and the convergence of Fourier series”, Math. Ann., 115:4 (1938), 581–612 | DOI | MR | Zbl
[2] Lesniewicz R., Orlicz W., “On generalized variation, II”, Studia Math., 45:1 (1973), 71–109 | MR
[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, Nauka, M., 1969
[4] Kats B. A., “The inequalities for polynomials and integration over fractal arcs”, Canad. Math. Bull. (to appear)