Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_6_a1, author = {B. Jefferies and G. W. Johnson}, title = {Feynman's {Operational} {Calculi} for {Noncommuting} {Systems} of {Operators:} {Tensors,} {Ordered} {Supports,} and {Disentangling} an {Exponential} {Factor}}, journal = {Matemati\v{c}eskie zametki}, pages = {815--838}, publisher = {mathdoc}, volume = {70}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a1/} }
TY - JOUR AU - B. Jefferies AU - G. W. Johnson TI - Feynman's Operational Calculi for Noncommuting Systems of Operators: Tensors, Ordered Supports, and Disentangling an Exponential Factor JO - Matematičeskie zametki PY - 2001 SP - 815 EP - 838 VL - 70 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a1/ LA - ru ID - MZM_2001_70_6_a1 ER -
%0 Journal Article %A B. Jefferies %A G. W. Johnson %T Feynman's Operational Calculi for Noncommuting Systems of Operators: Tensors, Ordered Supports, and Disentangling an Exponential Factor %J Matematičeskie zametki %D 2001 %P 815-838 %V 70 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a1/ %G ru %F MZM_2001_70_6_a1
B. Jefferies; G. W. Johnson. Feynman's Operational Calculi for Noncommuting Systems of Operators: Tensors, Ordered Supports, and Disentangling an Exponential Factor. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 815-838. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a1/
[1] Feynman R., “An operator calculus having applications in quantum electrodynamics”, Phys. Rev., 84 (1951), 108–128 | DOI | MR | Zbl
[2] Feynman R., “Mathematical formulation of the quantum theory of electromagnetic interaction”, Phys. Rev., 80 (1950), 440–457 | DOI | MR | Zbl
[3] Feynman R., Hibbs A., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | Zbl
[4] Jefferies B., Johnson G. W., “Feynman's operational calculi for noncommuting operators: Definitions and elementary properties”, Russ. J. Math. Phys., 8:2 (2001), 153–178 | MR
[5] Johnson G. W., Lapidus M. L., The Feynman Integral and Feynman's Operational Calculus, Oxford Math. Monograph., Oxford Univ. Press, Oxford, 2000
[6] Maslov V. P., Operatornye metody, Nauka, M., 1973
[7] Nazaikinskii V. E., Shatalov V. E., Sternin B. Yu., Methods of Noncommutative Analysis, Studies in Math., 22, Walter de Gruyter, Berlin–New York, 1996 | MR
[8] Jefferies B., Johnson G. W., Nielsen L., “Feynman's operational calculi for time dependent noncommuting operators”, Proc. of Seoul Conference “Feynman Integral and Applications”; J. Korean Math. Soc., 38 (2001) (to appear)
[9] Nielsen L., Thesis, Univ. of Nebraska, Lincoln, 1999 | Zbl
[10] Johnson G. W., Nielsen L., “A stability theorem for Feynman's operational calculus”, Conference in Honor of Sergio Albeverio's 60th birthday, Conference Proc. Canad. Math. Soc., 29, 2000, 351–365 | Zbl
[11] Jefferies B., Johnson G. W., Feynman's operational calculi for noncommuting systems of operators, Pure Math. Report. PM 98/99, School of Mathematics, UNSW, Sydney, Australia, 1999
[12] Reed M., Simon B., Methods of Modern Mathematical Physics, V. 1, Acad. Press, Orlando, 1980
[13] Anderson R. F. V., “The Weyl functional calculus”, J. Funct. Anal., 4 (1969), 240–267 | DOI | Zbl