Universal Margin Factors and Selection Criteria in Variable Environment
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 691-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonautonomous dynamical systems, the principle of inheriting local properties by global Poincaré maps is developed. Using this method, a selection criterion for systems of “close” competitors is found: to gain competitive advantage, it suffices to outproduce other populations with a margin. The margin factor in question remains uniformly bounded as the number of competitors in the community grows.
@article{MZM_2001_70_5_a4,
     author = {V. G. Il'ichev},
     title = {Universal {Margin} {Factors} and {Selection} {Criteria} in {Variable} {Environment}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {691--704},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a4/}
}
TY  - JOUR
AU  - V. G. Il'ichev
TI  - Universal Margin Factors and Selection Criteria in Variable Environment
JO  - Matematičeskie zametki
PY  - 2001
SP  - 691
EP  - 704
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a4/
LA  - ru
ID  - MZM_2001_70_5_a4
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%T Universal Margin Factors and Selection Criteria in Variable Environment
%J Matematičeskie zametki
%D 2001
%P 691-704
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a4/
%G ru
%F MZM_2001_70_5_a4
V. G. Il'ichev. Universal Margin Factors and Selection Criteria in Variable Environment. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 691-704. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a4/

[1] Rozonoer L. I., Sedykh E. I., “O mekhanizmakh evolyutsii samovosproizvodyaschikhsya sistem, I”, Avtomatika i telemekhanika, 1979, no. 2, 110–119

[2] Ilichev V. G., “Fragment matematicheskoi teorii konkurentsii biologicheskikh vidov v peremennoi srede”, Differents. uravneniya, 27:3 (1991), 437–447 | MR | Zbl

[3] Ilichev V. G., “Delta-funktsii i teoriya biologicheskoi konkurentsii v peremennoi srede”, Avtomatika i telemekhanika, 1996, no. 11, 115–127 | MR | Zbl

[4] Vance R. R., Coddington E. A., “A nonautonomus model of population growth”, J. Math. Biology, 27:5 (1989), 491–506 | DOI | MR | Zbl

[5] Ilichev V. G., “O tekhnologii postroeniya imitatsionnykh modelei ekologicheskikh sistem. Mekhanizmy adaptatsii”, Matem. modelirovanie, 4:3 (1992), 11–19 | MR

[6] Contois D. E., “Kinetics of bacterial growth, relationship between population density and specific growth rate of continuous culture”, Gen. Microbiol., 1959, no. 1–2, 40

[7] Ilichev V. G., Ilicheva O. A., “Diskretnye modeli i znak-invariantnye struktury matrits”, Izv. RAN. Teoriya i sistemy upravleniya, 1998, no. 4, 110–117 | MR

[8] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[9] Ilichev V. G., “Neozhidannye svoistva konkurentsii biologicheskikh vidov v peremennoi srede”, Avtomatika i telemekhanika, 1990, no. 9, 34–44 | MR | Zbl

[10] Ilichev V. G., “Delta-funktsii i issledovanie ekologicheskikh modelei Volterra v peremennoi srede”, Izv. vuzov. Matem., 1998, no. 4, 23–33 | MR