On a Property of Functions on the Sphere
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 679-690

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the Knaster conjecture, for any continuous function $f\colon S^{n-1}\to\mathbb R$ and any $n$-point subset of the sphere $S^{n-1}$, there exists a rotation mapping all the points of this subset to a level surface of the function $f$. In the present paper, this conjecture is proved for the case in which $n=p^2$ for an odd prime $p$ and the points lie on a circle and divide it into equal parts.
@article{MZM_2001_70_5_a3,
     author = {A. Yu. Volovikov},
     title = {On a {Property} of {Functions} on the {Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {679--690},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - On a Property of Functions on the Sphere
JO  - Matematičeskie zametki
PY  - 2001
SP  - 679
EP  - 690
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/
LA  - ru
ID  - MZM_2001_70_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T On a Property of Functions on the Sphere
%J Matematičeskie zametki
%D 2001
%P 679-690
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/
%G ru
%F MZM_2001_70_5_a3
A. Yu. Volovikov. On a Property of Functions on the Sphere. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 679-690. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/