Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_5_a3, author = {A. Yu. Volovikov}, title = {On a {Property} of {Functions} on the {Sphere}}, journal = {Matemati\v{c}eskie zametki}, pages = {679--690}, publisher = {mathdoc}, volume = {70}, number = {5}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/} }
A. Yu. Volovikov. On a Property of Functions on the Sphere. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 679-690. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a3/
[1] Knaster B., “Problem 4”, Colloq. Math., 1947, no. 1, 30
[2] Makeev V. V., “O nekotorykh voprosakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin, 1986, 75–85 | MR | Zbl
[3] Babenko I. K., Bogatyi S. A., “K otobrazheniyu sfery v evklidovo prostranstvo”, Matem. zametki, 46:3 (1989), 3–8 | MR | Zbl
[4] Volovikov A. Yu., “Teorema tipa Burzhena–Yanga dlya $\mathbb Z^n_p$-deistviya”, Matem. sb., 183:7 (1992), 115–144
[5] Chen W., “Counterexamples to Knaster's conjecture”, Topology, 37 (1998), 401–405 | DOI | MR | Zbl
[6] Bogatyi S. A., “Topologicheskie metody v kombinatornykh zadachakh”, UMN, 41:6 (1986), 37–47 | MR
[7] Makeev V. V., “Zadacha Knastera i pochti sfericheskie secheniya”, Matem. sb., 180:3 (1989), 424–431 | Zbl
[8] Floyd E. E., “Real-valued mappings of spheres”, Proc. Amer. Math. Soc., 6 (1955), 19–22 | DOI | MR
[9] Yamabe H., Yujobô Z., “On the continuous functions defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl
[10] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson, I”, Ann. of Math., 60:2 (1954), 262–282 | DOI | MR | Zbl
[11] Munkholm H. J., “On the Borsuk–Ulam theorem for $\mathbb Z_{p^\alpha }$ actions on $S^{2n-1}$ and maps $S^{2n-1}\to \mathbb R^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl
[12] Makeev V. V., “Prostranstvennye obobscheniya nekotorykh teorem o vypuklykh figurakh”, Matem. zametki, 36:3 (1984), 405–415 | MR | Zbl
[13] Volovikov A. Yu., “K teoreme Yanga o funktsiyakh na sfere”, IX Vsesoyuznaya geometricheskaya konferentsiya, Tez. soobsch., Shtinitsa, Kishinev, 1988, 68–69
[14] Volovikov A., “Dimension and $C$-essentiality of $\mathbb Z_p$-coincidence set of map”, $Q$ $A$ in General Topology, 8. Spec. Issue (1990), 207–217 | MR | Zbl
[15] Serre J.-P., “Homologie singuliére des espaces fibrés. Applications”, Ann. Math., 54 (1951), 425–505 | DOI | MR | Zbl
[16] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts”, Ann. of Math. (2), 57 (1953), 115–207 | DOI | MR | Zbl
[17] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl
[18] Munkholm H. J., Nakaoka M., “The Borsuk–Ulam theorem and formal group laws”, Osaka J. Math., 9 (1972), 337–349 | MR | Zbl
[19] Alexander J. C., Yorke J. A., “The homotopy continuation method: numerically implementable topological procedures”, Trans. Amer. Math. Soc., 242 (1978), 271–284 | DOI | MR | Zbl
[20] Alligood K. T., “Topological conditions for continuation of fixed points”, Lecture Notes in Math., no. 886, 1981, 20–32 | MR | Zbl
[21] Makeev V. V., “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Issledovaniya po topologii, Zap. nauch. seminarov LOMI, 167, no. 6, Nauka, L., 1988, 169–178 | Zbl