Exact Non-Self-Similar Solutions of the Equation
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 787-792
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation
$$
u_t=\Delta \ln u,\quad
u\triangleq u(\mathbf x,t):\Omega\times\mathbb R^+\to\mathbb R,
\quad\mathbf x\in\mathbb R^n,
$$
where $\Omega\subset\mathbb R^n$ is the domain and $\mathbb R^+=\{t:0\le t+\infty\}$, $u(\mathbf x,t)\ge0$ is the temperature of the medium.
@article{MZM_2001_70_5_a13,
author = {\`E. I. Semenov and G. A. Rudykh},
title = {Exact {Non-Self-Similar} {Solutions} of the {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {787--792},
publisher = {mathdoc},
volume = {70},
number = {5},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/}
}
È. I. Semenov; G. A. Rudykh. Exact Non-Self-Similar Solutions of the Equation. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 787-792. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/