Exact Non-Self-Similar Solutions of the Equation
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 787-792

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$ u_t=\Delta \ln u,\quad u\triangleq u(\mathbf x,t):\Omega\times\mathbb R^+\to\mathbb R, \quad\mathbf x\in\mathbb R^n, $$ where $\Omega\subset\mathbb R^n$ is the domain and $\mathbb R^+=\{t:0\le t+\infty\}$, $u(\mathbf x,t)\ge0$ is the temperature of the medium.
@article{MZM_2001_70_5_a13,
     author = {\`E. I. Semenov and G. A. Rudykh},
     title = {Exact {Non-Self-Similar} {Solutions} of the {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {787--792},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/}
}
TY  - JOUR
AU  - È. I. Semenov
AU  - G. A. Rudykh
TI  - Exact Non-Self-Similar Solutions of the Equation
JO  - Matematičeskie zametki
PY  - 2001
SP  - 787
EP  - 792
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/
LA  - ru
ID  - MZM_2001_70_5_a13
ER  - 
%0 Journal Article
%A È. I. Semenov
%A G. A. Rudykh
%T Exact Non-Self-Similar Solutions of the Equation
%J Matematičeskie zametki
%D 2001
%P 787-792
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/
%G ru
%F MZM_2001_70_5_a13
È. I. Semenov; G. A. Rudykh. Exact Non-Self-Similar Solutions of the Equation. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 787-792. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a13/