On a Characterization of Spaces of Differentiable Functions
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 758-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize Bernstein's theorem characterizing the space $C^k[a,b]$ by means of local approximations. The closed interval $[a,b]$ is partitioned into disjoint half-intervals on which best approximation polynomials of degree $k-1$ divided by the lengths of these half-intervals taken to the power $k$ are considered. The existence of the limits of these ratios as the lengths of the half-intervals tend to zero is a criterion for the existence of the $k$th derivative of a function. We prove the theorem in a stronger form and extend it to the spaces $W_p^k[a,b]$.
@article{MZM_2001_70_5_a10,
     author = {A. N. Morozov},
     title = {On a {Characterization} of {Spaces} of {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {758--768},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a10/}
}
TY  - JOUR
AU  - A. N. Morozov
TI  - On a Characterization of Spaces of Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 758
EP  - 768
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a10/
LA  - ru
ID  - MZM_2001_70_5_a10
ER  - 
%0 Journal Article
%A A. N. Morozov
%T On a Characterization of Spaces of Differentiable Functions
%J Matematičeskie zametki
%D 2001
%P 758-768
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a10/
%G ru
%F MZM_2001_70_5_a10
A. N. Morozov. On a Characterization of Spaces of Differentiable Functions. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 758-768. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a10/

[1] Bernshtein S. N., Sobranie sochinenii, T. 2, Izd. AN SSSR, M.–L., 1954

[2] Chebyshev P. L., Sobranie sochinenii, T. 2, Izd. AN SSSR, M.–L., 1948

[3] Brudnyi Yu. A., Issledovanie svoistv funktsii mnogikh peremennykh metodami teorii lokalnykh priblizhenii, Diss. ... d. f.-m. n., LOMI AN SSSR, L., 1977

[4] Morozov A. N., “Analog teoremy Bernshteina v prostranstve $L_1$”, Matem. zametki, 57:5 (1995), 699–703 | MR | Zbl

[5] Morozov A. N., “Tochnye asimptoticheskie formuly dlya kusochno-polinomialnogo priblizheniya differentsiruemykh funktsii”, Arkhitektura i programmnoe obespechenie vychislitelnykh sistem, Sb. nauchnykh statei, Yaroslavl, 1992, 147–163

[6] Brudnyi Yu. A., “Kriterii suschestvovaniya proizvodnykh v $L_p$”, Matem. sb., 73(115):1 (1967), 42–64 | MR | Zbl

[7] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. MMO, 24, URSS, M., 1971, 69–132 | MR | Zbl

[8] Irodova I. P., “Svoistva funktsii, zadannykh skorostyu ubyvaniya kusochno-polinomialnoi approksimatsii”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1980, 92–118 | MR

[9] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[10] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981 | Zbl

[11] Phillips G. M., “Error estimates for best approximation”, Approximation Theory, Acad. Press, London, 1970, 1–6