Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 660-669
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider an analytic Hamiltonian system differing from an integrable system by a small perturbation of order $\varepsilon$. The corresponding unperturbed integrable system is degenerate with proper and limit degeneracy: all variables, except two, are at rest and there is an elliptic singular point in the plane of these two variables. It is shown that by an analytic symplectic change of the variable, which is $O(\varepsilon)$-close to the identity substitution, the Hamiltonian can be reduced to a form differing only by exponentially small ($O(e^{-\operatorname{const}/\varepsilon})$) terms from the Hamiltonian possessing the following properties: all variables, except two, change slowly at a rate of order $\varepsilon$ and for the two remaining variables the origin is the point of equilibrium; moreover, the Hamiltonian depends only on the action of the system linearized about this equilibrium.
@article{MZM_2001_70_5_a1,
author = {J. Br\"uning and S. Yu. Dobrokhotov and M. A. Poteryakhin},
title = {Averaging for {Hamiltonian} {Systems} with {One} {Fast} {Phase} and {Small} {Amplitudes}},
journal = {Matemati\v{c}eskie zametki},
pages = {660--669},
publisher = {mathdoc},
volume = {70},
number = {5},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/}
}
TY - JOUR AU - J. Brüning AU - S. Yu. Dobrokhotov AU - M. A. Poteryakhin TI - Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes JO - Matematičeskie zametki PY - 2001 SP - 660 EP - 669 VL - 70 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/ LA - ru ID - MZM_2001_70_5_a1 ER -
J. Brüning; S. Yu. Dobrokhotov; M. A. Poteryakhin. Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 660-669. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/