Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 660-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider an analytic Hamiltonian system differing from an integrable system by a small perturbation of order $\varepsilon$. The corresponding unperturbed integrable system is degenerate with proper and limit degeneracy: all variables, except two, are at rest and there is an elliptic singular point in the plane of these two variables. It is shown that by an analytic symplectic change of the variable, which is $O(\varepsilon)$-close to the identity substitution, the Hamiltonian can be reduced to a form differing only by exponentially small ($O(e^{-\operatorname{const}/\varepsilon})$) terms from the Hamiltonian possessing the following properties: all variables, except two, change slowly at a rate of order $\varepsilon$ and for the two remaining variables the origin is the point of equilibrium; moreover, the Hamiltonian depends only on the action of the system linearized about this equilibrium.
@article{MZM_2001_70_5_a1,
     author = {J. Br\"uning and S. Yu. Dobrokhotov and M. A. Poteryakhin},
     title = {Averaging for {Hamiltonian} {Systems} with {One} {Fast} {Phase} and {Small} {Amplitudes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {660--669},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/}
}
TY  - JOUR
AU  - J. Brüning
AU  - S. Yu. Dobrokhotov
AU  - M. A. Poteryakhin
TI  - Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes
JO  - Matematičeskie zametki
PY  - 2001
SP  - 660
EP  - 669
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/
LA  - ru
ID  - MZM_2001_70_5_a1
ER  - 
%0 Journal Article
%A J. Brüning
%A S. Yu. Dobrokhotov
%A M. A. Poteryakhin
%T Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes
%J Matematičeskie zametki
%D 2001
%P 660-669
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/
%G ru
%F MZM_2001_70_5_a1
J. Brüning; S. Yu. Dobrokhotov; M. A. Poteryakhin. Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 660-669. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a1/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii kolebanii, Nauka, M., 1974

[2] Neishtadt A. I., “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, PMM, 48:2 (1984), 197–205 | MR

[3] Bryuning I., Dobrokhotov S. Yu., “Globalnoe kvaziklassicheskoe opisanie spektra dvumernogo magnitnogo operatora Shrëdingera s periodicheskim elektricheskim i silnym magnitnym polyami”, Dokl. RAN, 379:3 (2001), 313–318

[4] Arnold V. A., “Malye znamenateli i problemy ustoichivosti v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[5] Arnold V. A., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974

[6] Gelfreich V., Lerman L., Almost invariant elliptic manifolds in a singularly perturbed Hamiltonian system, Mathematical Physics Preprint Archive, No 01-134, 2001